We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Machine Learning Under Test

Formale Metadaten

Titel
Machine Learning Under Test
Serientitel
Teil
98
Anzahl der Teile
173
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
ProduktionsortBilbao, Euskadi, Spain

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Valerio Maggio - Machine Learning Under Test One point usually underestimated or omitted when dealing with machine learning algorithms is how to write *good quality* code. The obvious way to face this issue is to apply automated testing, which aims at implementing (likely) less-buggy and higher quality code. However, testing machine learning code introduces additional concerns that has to be considered. On the one hand, some constraints are imposed by the domain, and the risks intrinsically related to machine learning methods, such as handling unstable data, or avoid under/overfitting. On the other hand, testing scientific code requires additional testing tools (e.g., `numpy.testing`), specifically suited to handle numerical data. In this talk, some of the most famous machine learning techniques will be discudded and analysed from the `testing` point of view, emphasizing that testing would also allow for a better understanding of how the whole learning model works under the hood. The talk is intended for an *intermediate* audience. The content of the talk is intended to be mostly practical, and code oriented. Thus a good proficiency with the Python language is **required**. Conversely, **no prior knowledge** about testing nor Machine Learning algorithms is necessary to attend this talk.
Schlagwörter