We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Use Python to process 12mil events per minute and still keep it simple (Talk)

Formale Metadaten

Titel
Use Python to process 12mil events per minute and still keep it simple (Talk)
Serientitel
Teil
35
Anzahl der Teile
173
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
ProduktionsortBilbao, Euskadi, Spain

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Teodor Dima - Use Python to process 12mil events per minute and still keep it simple (Talk) Creating a large-scale event processing system can be a daunting task. Especially if you want it “stupid simple” and wrapped around each client’s needs. We built a straightforward solution for this using Python 3 and other open-source tools. Main issues to solve for a system that needs to be both performant and scalable: - handling a throughput of 1 million events per minute in a 4 cores AWS instance; - following the principle of least astonishment; - data aggregation and how Python's standard libraries and data structures can help; - failsafe and profiling mechanisms that can be applied to any Linux service in production; - addressing unexpected behaviors of Python’s Standard Library; like reading from a file while it is written; - tackling a sudden spectacular cloud instance failure; The alternative to this system would be to adopt existing technology stacks that might be too general, add more complexity, bloat, costs and which need extensive work to solve your specific problem. Moreover, our approach resulted in over 85% drop on hardware utilisation.
Schlagwörter