We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Extending Scikit-Learn with your own Regressor

Formale Metadaten

Titel
Extending Scikit-Learn with your own Regressor
Serientitel
Teil
64
Anzahl der Teile
119
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
ProduktionsortBerlin

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Florian Wilhelm - Extending Scikit-Learn with your own Regressor We show how to write your own robust linear estimator within the Scikit-Learn framework using as an example the Theil-Sen estimator known as "the most popular nonparametric technique for estimating a linear trend". ----- Scikit-Learn is a well-known and popular framework for machine learning that is used by Data Scientists all over the world. We show in a practical way how you can add your own estimator following the interfaces of Scikit-Learn. First we give a small introduction to the design of Scikit-Learn and its inner workings. Then we show how easily Scikit-Learn can be extended by creating an own estimator. In order to demonstrate this, we extend Scikit-Learn by the popular and robust Theil-Sen Estimator that is currently not in Scikit-Learn. We also motivate this estimator by outlining some of its superior properties compared to the ordinary least squares method (LinearRegression in Scikit-Learn).
Schlagwörter