We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Spectral networks and harmonic maps to buildings

Formale Metadaten

Titel
Spectral networks and harmonic maps to buildings
Serientitel
Anzahl der Teile
3
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This is joint work with L. Katzarkov, A. Noll, and P. Pandit in Vienna. A boundary point of the character variety gives rise to a spectral curve, and a harmonic map to a building. The differential of the harmonic map is the real part of the multivalued tuple of differentials defined over the spectral curve. Gaiotto-Moore-Neitzke have introduced the notion of "spectral network" associated with such a multivalued differential, determining the WKB approximation of the nonabelian Hodge or Riemann-Hilbert correspondences. We have tried to gain some insight into the relationship between the spectral network and the harmonic map to the building: basically, the spectral network lines are located where the curve intersects the codimension 1 faces of the building.