We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

An Integral lift of contact homology

Formale Metadaten

Titel
An Integral lift of contact homology
Serientitel
Anzahl der Teile
36
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Cylindrical contact homology is arguably one of the more notorious Floer-theoretic constructions. The past decade has been less than kind to this theory, as the growing knowledge of gaps in its foundations has tarnished its claim to being a well-defined contact invariant. However, jointly with Hutchings we have managed to redeem this theory in dimension 3 for dynamically convex contact manifolds. This talk will highlight our implementation of non-equivariant constructions, domain dependent almost complex structures, automatic transversality, and obstruction bundle gluing, yielding a homological contact invariant which is expected to be isomorphic to SH^+ under suitable assumptions, though it does not require a filling of the contact manifold. By making use of family Floer theory we obtain an S^1-equivariant theory defined over Z coefficients, which when tensored with Q yields cylindrical contact homology, now with the guarantee of well-definedness and invariance.