We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

High dimensional statistical inference and random matrices

Formale Metadaten

Titel
High dimensional statistical inference and random matrices
Serientitel
Anzahl der Teile
33
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Multivariate statistical analysis is concerned with observations on several variables which are thought to possess some degree of inter-dependence. Driven by problems in genetics and the social sciences, it first flowered in the earlier half of the last century. Subsequently, random matrix theory (RMT) developed, initially within physics, and more recently widely in mathematics. While some of the central objects of study in RMT are identical to those of multivariate statistics, statistical theory was slow to exploit the connection. However, with vast data collection ever more common, data sets now often have as many or more variables than the number of individuals observed. In such contexts, the techniques and results of RMT have much to offer multivariate statistics. The talk reviews some of the progress to date.
Schlagwörter