We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Unicellular maps vs hyperbolic surfaces in high genus

Formale Metadaten

Titel
Unicellular maps vs hyperbolic surfaces in high genus
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the past few years, the study of the geometric properties of random maps has been extended to a new regime, the 'high genus regime', where we are interested in maps whose size and genus tend to infinity at the same time, at the same rate. We consider here a slightly different case, where the genus also tends to infinity, but less rapidly than the size, and we study the law of simple cycles (with a well-chosen rescaling of the graph distance) in unicellular maps (maps with one face), thanks to a powerful bijection of Chapuy, Féray and Fusy. The interest of this work is that we obtain exactly the same law as Mirzakhani and Petri who counted closed geodesics on a model of random hyperbolic surfaces in large genus (the Weil- Petersson measure). This leads us to conjecture that these two models are somehow 'the same' in the limit.
Schlagwörter