We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

How Can Spintronic Devices Be Built to Improve Computing Capacity?

Formale Metadaten

Titel
How Can Spintronic Devices Be Built to Improve Computing Capacity?
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The silicon-based technology that is used today to access and compute information is reaching its limits. To further improve computing capacity, this essentially two-dimensional technology, as STUART PARKIN puts it, needs to give way to the three-dimensional approach of spintronic devices that use not only electric current but also the spin of the electrons. In this video, he explains how the research team created a new type of storage device. It consists of billions of so-called race tracks which are essentially vertical columns of magnetic material in which tiny magnetic regions representing zeros and ones are stored. These can be manipulated using a current of spin polarized electrons that can move information up and down these race tracks. During the last three to four years, the researchers discovered four distinct new physical phenomena that enable them to move the magnetic regions in these racetracks extremely efficiently with current pulses. This could pave the way to solid-state devices with about one hundred times the capacity of today's solid-state drives because of the three-dimensional nature of this new concept that is entirely derived from the new physics of spintronics.