We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Best Paper: Accelerating High-Resolution Weather Models with Deep-Learning Hardware

Formale Metadaten

Titel
Best Paper: Accelerating High-Resolution Weather Models with Deep-Learning Hardware
Serientitel
Anzahl der Teile
10
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.5 Schweiz:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The next generation of weather and climate models will have an unprecedented level of resolution and model complexity, and running these models efficiently will require taking advantage of future supercomputers and heterogeneous hardware. In this paper, we investigate the use of mixed-precision hardware that supports floating-point operations at double-, single- and half-precision. In particular, we investigate the potential use of the NVIDIA Tensor Core, a mixed-precision matrix-matrix multiplier mainly developed for use in deep learning, to accelerate the calculation of the Legendre transforms in the Integrated Forecasting System (IFS), one of the leading global weather forecast models. In the IFS, the Legendre transform is one of the most expensive model components and dominates the computational cost for simulations at a very high resolution. We investigate the impact of mixed-precision arithmetic in IFS simulations of operational complexity through software emulation. Through a targeted but minimal use of double-precision arithmetic we are able to use either half-precision arithmetic or mixed half/single-precision arithmetic for almost all of the calculations in the Legendre transform without affecting forecast skill.