We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Big Earth Observation- and Geodata analysis with actinia and GRASS GIS

Formale Metadaten

Titel
Big Earth Observation- and Geodata analysis with actinia and GRASS GIS
Serientitel
Anzahl der Teile
8
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We present a cloudbased technology, that allows “big geodata analysis” in process chains, that make use of actinia and GRASS GIS. Geo- and EO-data are more and more available, especially the growing Open Data policy of organisations fuels this process. With this awareness and demand for geo-based decision support increases. We want to present an implementation of the new paradigm of “bring processes to the data”. In the talk we present how big geodata analysis process chains could be easily implemented in a cloud environment by using GRASS GIS and actinia (OSGeo project & OSGeo Community project, respectively) for the process algorithms. The combination of these allows cloud optimized geodata processing triggered through simple API-calls. In the first part we show the architectural design and the interactions between actinia and GRASS GIS. In the 2nd part we present examples of process chains. These are a) automated surface-type detection from orthophotos, b) on-demand creation of cloud free Sentinel-2 scenes using temporal interpolation, and lastly c) gap-filling of high-resolution land surface temperature data from MODIS-satellite data.