We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Lower bounds for the perfect set property at weakly compact cardinals

Formale Metadaten

Titel
Lower bounds for the perfect set property at weakly compact cardinals
Serientitel
Anzahl der Teile
5
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
By the Cantor-Bendixson theorem, subtrees of the binary tree on ω satisfy a dichotomy - either the tree has countably many branches or there is a perfect subtree (and in particular, the tree has continuum manybranches, regardless of the size of the continuum). We generalize this to arbitrary regular cardinals κ and ask whether every κ-tree with more than κ branches has a perfect subset. From large cardinals, this statement isconsistent at a weakly compact cardinal κ. We show using stacking mice that the existence of a non-domestic mouse (which yields a model with a proper class of Woodin cardinals and strong cardinals) is a lower bound. Moreover, we study variants of this statement involving sealed trees, i.e. trees with the property that their set of branches cannot be changed by certain forcings, and obtain lower bounds for these as well. This is joint work with Yair Hayut.