We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Simplicity of algebras associated to non-Hausdorff groupoids

Formale Metadaten

Titel
Simplicity of algebras associated to non-Hausdorff groupoids
Serientitel
Anzahl der Teile
11
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We give conditions on a potentially non-Hausdorff étale groupoid which guarantee that its associated C*-algebra is simple. As a key source of examples, work of Nekrashevych and Exel-Pardo describes a class of C*-algebras arising from the action of a group on a finite alphabet (or more generally, a finite graph). The above authors described these as groupoid C*-algebras and gave conditions which guaranteed their simplicity, usually starting from assumptions which imply the groupoid is Hausdorff. These groupoids need not be Hausdorff, notably for the self-similar action associated to the Grigorchuk group, so it was an open question whether the C*-algebra of the Grigorchuk group action was simple or not. We answer this question in the affirmative. We also discuss simplicity criteria for the associated Steinberg algebras.