We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantitative inverse scattering via reduced order modeling

Formale Metadaten

Titel
Quantitative inverse scattering via reduced order modeling
Serientitel
Anzahl der Teile
4
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
I will discuss an inverse problem for the wave equation, where a collection (array) of sensors probes an unknown heterogeneous medium with waves and measures the echoes.The goal is to determine scattering structures in the medium modeled by a reflectivity function. Much of the existing imaging methodology is based on a linear least squares data fit approach. However, the mapping between the reflectivity and the wave measured at the array is nonlinear and the resulting images have artifacts. I will show how to use a reduced order model (ROM) approach to solve the inverse scattering problem. The ROM is data driven i.e., it is constructed from the data, with no knowledge of the medium. It approximates the wave propagator, which is the operator that maps the wave from one time step to the next. I will show how to use the ROM to: (1) Remove the multiple scattering (nonlinear) effects from the data, which can then be used with any linearized inversion algorithm. (2) Obtain a well conditioned quantitative inversion algorithm for estimating the reflectivity.