We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On the real inflection points of linear (in)complete series on real (hyper)elliptic curves.

Formale Metadaten

Titel
On the real inflection points of linear (in)complete series on real (hyper)elliptic curves.
Serientitel
Anzahl der Teile
8
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Using tools from Tropical and Non-Archimedean Geometry, we show that there is a tight relationship between the following two concepts of real inflection of real linear series defined on real algebraic curves: 1. that of complete series on hyper-elliptic curves, and 2. that of incomplete series on elliptic curves. Concretely, the case (1) can be degenerated to the case (2), and the case (2) can be regenerated to the case (1). This interplay gives us two products: 1. A limit linear series on a (marked) metrized complex of (real) algebraic curves. By this we mean a marked tropical curve with real models. 2. A 2-dimensional family of polynomials generalizing the division polynomials (which are used to compute the torsion points of elliptic curves) This is a joint work with I. Biswas (TATA, India) and E. Cotterill (UFF, Brazil).