We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On Problem 32 from Rufus Bowen's list: classification of shift spaces with specification

Formale Metadaten

Titel
On Problem 32 from Rufus Bowen's list: classification of shift spaces with specification
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Rufus Bowen left a notebook containing 157 open problems and questions. Problem 32 on that list asks for classification of shift spaces with the specification property. Unfortunately, there is no universally accepted agreement what does it mean “to classify” a family of mathematical objects, and Bowen didn't left any clues. During my talk, I will describe one of the most popular ways of making the problem formal. It is based on the theory of Borel equivalence relations. Inside that framework, I will explain a result saying that (roughly speaking) there is no reasonable classification for shift spaces with the specification property. More precisely, I will show that the isomorphism relation on the space of shifts with the specification property is a universal countable Borel equivalence relation, i.e. for every countable Borel equivalence relation F, we have that F is Borel reducible to E. It follows that no classification using a finite set of definable invariants is possible. This solves the problem provided that Bowen would agree with the notion of “classification” provided by the theory of Borel equivalence relations.