We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Certain finiteness results for local Kac-Moody groups

Formale Metadaten

Titel
Certain finiteness results for local Kac-Moody groups
Serientitel
Anzahl der Teile
7
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
About half a century ago, Simon Gindikin and Fredrick Karpelevich evaluated the well known Harish Chandra’s \textbf{c}-function for semisimple Lie groups. This solution became known as the Gindikin-Karpelvich formula. While studying the constant term of Eisenstein series on adelic groups, Langland in \emph{Euler Products}, formulated the p-adic analogue of \textbf{c}-function and solved this integral. Macdonald independently obtained this formula for p-adic Chevalley groups in his lectures notes \emph{Spherical Functions on a Group of p-adic Type}. In Kac-Moody settings, which are infinite dimensional in general, the first challenge is to show that the algebraic analogue of the \textbf{c}-function is well defined. This can be done by proving certain finiteness results. For affine Kac-Moody groups, Braverman, Garland, Kazhdan, and Patnaik (BGKP) did this in 2014. Recently, Auguste H´ebert generalized these results by using the combinatorial objects called \emph{hovels} associated with Kac-Moody groups. We are trying to obtain these finiteness results using the algebraic methods motivated by the work of BGKP. In my talk, I will describe these results and share our progress on it.