We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Sharper bounds for Chebyshev's θ(x) function

Formale Metadaten

Titel
Sharper bounds for Chebyshev's θ(x) function
Serientitel
Anzahl der Teile
7
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In 1792, Gauss conjectured that the primes occur with a density of 1logx around x. Therefore, when developing explicit results relating to the Prime Number Theorem, it is useful to study Chebyshev‚Äôs θ(x) function, given by ∑p≤xlogp. Over summer 2017, I worked on a joint project supported by NSERC USRA to develop an effective version of the Prime Number Theorem. In this talk, I present our results which are the current best results for the prime counting function θ(x) for various ranges of x. We developed these results by first surveying existing explicit results from the past 60 years on prime counting functions. Our results are based on a recent zero density result for the zeroes of the Riemann Zeta function (due to H. Kadiri, A. Lumley, and N. Ng).