We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Reproducible research in R

Formale Metadaten

Titel
Reproducible research in R
Serientitel
Anzahl der Teile
8
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this session, Facundo Muñoz (Cirad, France) describex tools and workflows to cumulatively improve the reproducibility of analyses performed in R. R is a mature, world-class, open-source statistical computing and data-analysis platform with a huge community of users from all areas of science and industry. Yet, most researchers rely only on its most basic scripting features, missing the opportunity to unleash its full potential, in particular concerning reproducible-research workflows. Specifically, we discuss encoding and platform-specific packages, the advantages of organising code into functions, using project-directories and relative paths, reproducible reports with RMarkdown, controlling package versions with Renv, organising code into a pipeline with targets, keeping track of changes from various collaborators with git, reproducibly publishing results with Continuous Integration in Git(Hu|La)b pages, reproducing the complete environment with docker, and controlling versions of the complete software stack with GNU Guix.
Schlagwörter