We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Factorization algebras in quantum, conformal, and topological Field Theory

Formale Metadaten

Titel
Factorization algebras in quantum, conformal, and topological Field Theory
Alternativer Titel
Factorization homology and applications
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Factorization algebras, and factorization homology, began in the work of Beilinson-Drinfeld, as an algebro-geometric/coordinate-free approach to vertex algebras and conformal blocks, respectively. They were re-interpreted by Costello-Gwilliam as a framework for algebras of observables in quantum field theory. A special class, the so-called "locally constant" factorization algebras received special attention from Lurie, Ayala-Francis, and Scheimbauer in the context of fully extended topological field theories. In the first lecture I shall recall this history, define factorization homology in the mold of Ayala-Francis, and recall the key property of excision, which both uniquely determines factorization homology as a functor, and gives an effective mechanism for its computation. In the second lecture, I will turn to examples in geometry and representation theory, following Ben-Zvi-Francis-Nadler, and our works with Ben-Zvi-Brochier and Brochier-Snyder. Specializing the "coefficients" to lie in presentable k-linear categories (the natural home of algebraic geometry and representation theory), one recovers character varieties, and their canonical quantizations, as a computation in factorization homology.