We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Modularity and tensor categories for affine vertex algebras at admissible level

Formale Metadaten

Titel
Modularity and tensor categories for affine vertex algebras at admissible level
Serientitel
Anzahl der Teile
9
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A well-known result is that modules of a rational vertex algebra form a modular tensor category and that the modular group action on graded traces coincides with the categorical one. Prime examples are affine vertex algebras at positive integer level. I would like to explain the state of the art for affine vertex algebras at admissible level and our knowledge is mainly restricted to the case of sl(2). From the character point of view three types of traces arise: vector-valued modular forms, meromorphic Jacobi forms and formal distributions. There are also three types of categories one can associate to the affine vertex algebra and categorical action of the modular group seems to coincide with the one on characters.