We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Design and analysis of autonomous quantum memories based on coherent feedback control

Formal Metadata

Title
Design and analysis of autonomous quantum memories based on coherent feedback control
Title of Series
Number of Parts
48
Author
License
CC Attribution - NonCommercial - NoDerivatives 3.0 Germany:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2011
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
Key ideas from the canonical theory of quantum error correction via coding and syndrome measurement can be "pushed down" to the level of physical models with stationary Hamiltonian couplings in various ways; in this talk I will review our group's work on an approach inspired by emerging ideas in coherent-feedback quantum control, which seem well-suited to the implementation settings of nanophotonic cavity-QED and superconducting circuit-QED. I will introduce some basic ideas of continuous syndrome measurement and embedded control dynamics, and discuss a class of intuitive master equations for autonomous quantum memories that can be derived via a modeling approximation that we call the small-volume limit. I will discuss some computational challenges involved in constructing and integrating such master equations for memories based on complex codes, and close with some general remarks on coherent feedback as a tool for interaction synthesis and disturbance attenuation in quantum engineering.