We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

10. Rotations, Part II: Parallel Axis Theorem

Formal Metadata

Title
10. Rotations, Part II: Parallel Axis Theorem
Title of Series
Part Number
10
Number of Parts
24
Author
License
CC Attribution - NonCommercial - ShareAlike 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date2006
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
Part II of Rotations. The lecture begins with an explanation of the Parallel Axis Theorem and how it is applied in problems concerning rotation of rigid bodies. The moment of inertia of a disk is discussed as a demonstration of the theorem. Angular momentum and angular velocity are examined in a variety of problems. 00:00 - Chapter 1. Review and Derive the Parallel Axis Theorem 16:27 - Chapter 2. For System of Masses: Derive KEtotal = ½ MV2 + ½ ICM2 27:55 - Chapter 3. Derive KEtotal in Terms of Equivalent Rotation about Stationary Point 38:40 - Chapter 4. Effect of Rotational Kinetic Energy on Translational Motion for No Skid 43:41 - Chapter 5. Example Problem: Torque on a Disk 49:30 - Chapter 6. Advanced Example Problem: Pulley Rotating and Translating 01:02:14 - Chapter 7. Example Problem: Systems with Angular Moment Conserved 01:09:09 - Chapter 8. Application: Angular Momentum Changes for Spinning Ballerina