Show filters Hide filters

Refine your search

Publication Year
1-36 out of 132 results
Change view
  • Sort by:
31:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A glimpse of FOSS4G in the environmental consulting arena

In the highly competitive world of environmental consulting, being able to manage large volumes of data and deliver timely, accurate information based on that data is critical to our ongoing success. As a relatively small company, we recognized that we needed something unique to survive and prosper in an industry dominated by huge corporations. Over the past 7 years we have made a considerable effort to shift over to a FOSS4G environment, with a belief that, not only would this decision enhance what we already do well, but give us the competitive edge we would need to ensure future prosperity.A brief presentation of a snapshot of our current FOSS4G status, how we arrived here and a workflow tour beginning at the data acquisition stage looking at the feed through our patented EDMS QA/QC system into PostgreSQL followed by a demonstration of a just a few of our many custom web/mobile/desktop applications that rely on the PostgreSQL back end database and how these solutions are able to deliver accurate and timely information to employees and clients alike, and finally, where to next.We take advantage of multiple FOSS4G including the likes of OpenLayers, MapServer, PostgreSQL/PostGIS, PHP, D3 and jQuery. This combination places us in an ideal position to respond to client needs with the ability to rapidly deliver almost any request.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:02 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Integrating FOSS4G into an enterprise system for Disaster Management

ROGUE (Rapid Open Geospatial User-Driven Enterprise) was a project funded under the Joint Capability Technology Demonstration (JCTD) Program from the U.S. Department of Defense. Boundless and LMN Solutions, LLC implemented the project, with the Pacific Disaster Center (PDC) serving in the role of project Transition Manager. The project's goal was to improve the abilities of the OpenGeo Suite to ingest, update, and distribute non-proprietary feature data in a distributed, collaborative, and occasionally disconnected environment. Under this project, PDC integrated the following technologies into its decision support system for emergency managers named DisasterAWARE:- GeoGit: Versioned replication of spatial data across multiple sites, supports disconnected editing and conflict resolution. - Arbiter: Android app for field data collection, syncs to GeoNode.- MapLoom: GeoNode GUI for spatial data editing and management. - KML Uploader: Functionality to upload KML for storage in PostGIS and served via GeoServer. - GeoServices REST (GSR): Extends GeoServer to publish data using the REST methodology of ArcGIS Server. This presentation will cover the integration of these components into DisasterAWARE, along with the security framework implemented for all components.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:08 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

The role of geospatial open source (FOSS4G) as a component of hybrid systems

Currently, it is rare that an organization faces a choice between "just commercial" or "just open source" geospatial software. Increasingly, the answer isn't about "or", it is now about solutions that may involve both. Indeed, Commercial systems - both installed software and cloud-based platforms - may have both functional and cost effectiveness gaps. Free and open source software for geospatial (FOSS4G) can be a critical component that helps to bridge these gaps. And, given that organizations may have large existing investments and sunk costs in commercial software it can make sense to leverage those investments by building hybrid systems that incorporate open source components. This presentation will describe several specific examples of hybrid systems that incorporate geospatial open source (e.g., OpenGeo Suite) alongside both Esri and Google components. The presentation will focus on both the business reasoning for choosing hybrid as well as the technical approaches taken. Ultimately, hybrid projects or systems can be very important as they provide a key entry-point for geospatial open source into organizations that might not otherwise consider it.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:30 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Educating 21st Century Geospatial Technology Industry Workers with Open Source Software

Where are GIS educators to go when they need educational material to teach FOSS4G in their academic programs? While commercial vendors, like Esri through their Virtual Campus, have a wealth of training material available, there are very limited resources for educators seeking to teach FOSS4G. The new QGIS Academy program is the first national effort to provide this much need academic infrastructure. The Academy has produced a set of five full GIS courses, based on the latest version of QGIS, to offer educators and others for free under the Creative Commons CC BY license. These courses have been under development since 2010 and use the US Department of Labor Geospatial Technology Competency Model (GTCM) as the basis for their scope and sequence. This presentation will demonstrate the courses and discuss their development and future plans.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:48 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Community Health Mapping

This talk will cover a FOSS4G case study in which a workflow was implemented in several minority public health organizations in 2013. The three organizations were: 1) the Urban Indian Health Institute (Seattle, WA), 2) Papa Ola Lokahi (Honolulu, HI) and 3) The Nature Conservancy of Hawaii (Honolulu, HI). The end users were not GIS professionals but public health staff. Such community based public health organizations do not typically have dedicated GIS staff or budgets for GIS. However, they have each identified mapping needs. The overarching goals of the project were to demonstrate that FOSS4G tools could be effective in minority public health applications, and that they could be used by non-GIS public health staff. Therefore, a focus was placed on identifying the most intuitive and low cost solution meeting their needs.The workflow started with field data collection and included spatial analysis and online data presentation. Field data collection was performed using smart phones and tablets that the end users already owned. Analysis was done via QGIS and final data presentation was done via GIS Cloud. Training sessions were conducted and support was provided throughout the year. However, each organization was able to use the tools with very little follow up support. Each project produced good results, and each is planning on continuing with additional projects in 2014. The workflow will be introduced and results of the three case studies shared.This work was funded by the National Library of Medicine's Division of Specialized Information Services via their Outreach and Special Populations Branch.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:43 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A FOSS4G-Based Geo Connection System for Education and Research

The presentation will examine the selection, installation, and the current and planned use of a CentOSÐbased system running FOSS4G to support student education, research, and projects with state and local organizations. A system was designed to foster collaborative work between an educational institution and the community. Specifically, it is being used to better understand and enhance distribution systems associated with local agriculture producers and consumers. Part of this work is the development of a web-based system to process and serve geospatial information in an effort to improve communication between food producers and consumers, i.e. restaurants, farmers markets, and Community Supported Agriculture (CSA). This presentation will demonstrate how the system was built to:¥ Continue investigation of the general principles and approaches for designing food distribution systems to enhance local food networks¥ Provide access to a web-based system for geospatial computations and data management¥ Serve as a resource for the community to access information in support of the broader goals of the CEDS research center¥ Act as an map server¥ Act as the server supporting deployment of geo-aware mobile phone applications implemented by the department to enhance the learning process on field trips and other field work¥ Collect, process, store, and serve data from environmental sensors to support education in weather, climate, and the environment
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Introduction to the geospatial goodies in Elasticsearch

In this session we'll introduce how you can work with spatial data in Elasticsearch - The Open Source, distributed, RESTful Search Engine. We'll provide a general introduction on how to index spatial data into Elasticsearch, then cover off on using spatial query and filters, before finishing up showing you how you can visualise and interact with spatial data stored in Elasticsearch using Kibana.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
20:50 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Responsive Interactivity: Toward User-centered Adaptive Map Experiences

In recent years, the web design community has moved quickly to accommodate the various devices and methods for accessing web content. The FOSS4G and wider development community have responded to this paradigm of adapting the layout of content to scale to the device of the user by creating and leveraging tools such as Leaflet and D3. However, there remains a lack of knowledge, understanding, and conversation about what it truly means to create a map experience that meets the present needs and expectations of the user. Designing an adaptive map should go beyond simply fitting it into a responsive layout. User variables, such as the mode of interaction and location-based needs, raise map-specific UI design questions that this community is uniquely positioned to answer.This talk will explore what it could mean cartographically and experientially to adapt all aspects of the map experience to the needs of the user using principles already embraced in other communities. Our goal is to provoke a wider discussion of how we, as a community, can work toward these objectives. Regardless of expertise level, anyone who is involved with the creation of interactive web maps has inevitably come across the problems associated with, and will benefit from involvement in this conversation.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:10 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

From Nottingham to PDX: QGIS 2014 roundup

Following the long awaited QGIS 2 release, announced at FOSS4G 2013 in Nottingham, the project decided to switch to a regular release cycle with three versions per year. QGIS 2.2 was the first release in this cycle and already packed with many new features like 1:n relations, gradient fills, native DXF export and NTv2 datum transformations to name a few. QGIS 2.4, released in June, has one major extension in its core: multithreaded rendering. Originally developed as a Google Summer of Code project, it makes a big difference in the responsiveness of QGIS desktop.This talk shows a selection of the latest features and gives an outlook what's in the works for QGIS 2.6. Some interesting plugins and other news from the community will keep you up to date with the high pace of this OSGeo project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
1:02:01 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Mapping for Investigations

Closing Keynote Speech, FOSS4G 2014, Portland, Oregon.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

What's new in Cesium: the open-source alternative for 3D maps

When building 3D mapping apps, we no longer have to deal with closed feature-sets, limited programming models, temporal data challenges and bulky deployments. This talk introduces Cesium, a WebGL-based JavaScript library designed for easy development of lightweight web mapping apps. With live demos, we will show Cesium's major geospatial features including high-resolution global-scale terrain, map layers and vector data; support for open standards such as WMS, TMS and GeoJSON; smooth 3D camera control; and the use of time as a first-class citizen. We will show how Cesium easily deploys to a web browser without a plugin and on Android mobile devices.Since last year's talk at FOSS4G NA, Cesium has added 3D models using the open-standard glTF, a large geometry library and higher-resolution terrain.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:41 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Geodesign: An Introduction to Design with Geography

Geodesign, at its most basic, is design with geography. It is the combination of the tools and techniques geographers and other geoscientists use to understand our world with the methods and workflows designers use to propose solutions and interventions. For instance, the typical master planning process in which GIS-based knowledge is separated from the design process can be turned into a geodesign task by sketching buildings and other land uses directly within a GIS, and seeing indicators update on the fly as various data graphics. This can then allow the designer(s) to pinpoint specific design interventions based on live feedback from geospatial information.Over the last 10 years, technology has facilitated an explosive growth in geodesign as both a framework for solving problems and a toolkit of geospatial analyses that feed into that framework. The growth of the Geodesign Summit in Redlands, CA from 2010 to 2014 is an example of the demand for this sort of framework.Parallel to the rise of geodesign, the tools represented by FOSS4G have also been evolving into sophisticated tools capable of taking on the needs of geodesign. However, to date there's been too little discussion of how to take the framework and working methods of geodesign and accomplish them with open source tools. This session will connect those dots by taking the typical parts of a geodesign framework (suitability analysis, sketching/designing, evaluating/comparing, iterating) and outlining our own experience making use of open source tools for geodesign. In particular, we will focus on how the interoperability of open source tools and the growth of web-based geospatial tools can support (and evolve!) the ways that geodesign is done.This presentation will address:What is geodesign: the conceptual framework and typical use cases for geodesignWhere are we: workflows and tool stacks we've used and seen others use to dateWhere could we go: identifying current gaps and pain points in existing stacks and possible solutions from emerging technologies
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GIS goes 3D : an OpenSource stack

3D in GIS is already here, with more and more data available, and new hardware and sensors for 3D data capture and interaction. The third dimension becomes useful for several use cases and applications, since the technology is now available to achieve full 3D spatial analysis, like 3D intersections, 3D buffers, triangulation and a lot of other data processing capabilities we already use with 2D data. 3D Point clouds from Lidar data, 3D Meshes or TIN, this can now be stored and processed.With 3D data, an absolute must-have is a nice, fast and smooth rendering of features. Visualization is a key element of a complete vertical software stack of 3D data management.This presentation will demonstrate the ability to setup and take advantage of a full FOSS4G 3D stack.Taking data from 3D sensors, or real use-case GIS Open Data, we present the components which can be used together to build the core infrastructure of 3D data management. From data storage to data visualization, through processing and webservices.* Learn how you can use PostgreSQL and PostGIS latest enhancement to store and process 3D data.* Discover how you can setup 3D Web Services for data dissemination* Visualize 3D data with QGIS thanks to the Horao Plugin* Find out the visualization tools available for your favorite browser (Three.js powered)Here we are, a full 3D stack, with OpenSource tools. Software components, data formats, protocols and standards, you will get a global picture of the infrastructure available to extract the value out of your 3D data.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
40:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Open Source is People

Keynote Speech, FOSS4G 2014, Portland, Oregon.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:15 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GRASS GIS 7: your reliable geospatial number cruncher

GRASS GIS (Geographic Resources Analysis Support System) looks back to the longest development history in the FOSS4G community. Having been available for 30 years, a lot of innovation has been put into the new GRASS GIS 7 release. After six years of development it offers a lot of new functionality, e.g. enhanced vector network analysis, voxel processing, a completely new engine for massive time series management, an animation tool for raster and vector map time series, a new graphic image classification tool, a "map swiper" for interactive maps comparison, and major improvements for massive data analysis (see also http://grass.osgeo.org/grass7/). The development was driven by the rapidly increasing demand for robust and modern free analysis tools, especially in terms of massive spatial data processing and processing on high-performance computing systems. With respect to GRASS GIS 6.4 more than 10,000 source code changes have since been made.GRASS GIS 7 provides a new powerful Python interface that allows users to easily create new applications that are powerful and efficient. The topological vector library has been improved in terms of accuracy, processing speed, and support for large files. Furthermore, projections of planets other than Earth are now supported as well. Many modules have been significantly optimized in terms of speed even by orders of magnitude. The presentation will showcase the new features along with real-world examples and the integration with QGIS, gvSIG CE, R statistics, and the ZOO WPS engine.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:18 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

How to tell stories and engage an audience with maps

Maps and stories go together like two peas in a pod. Why is that and how do we take advantage of it? Through my work at CartoDB, I have been able to think deeply about the role of storytelling for today's map makers. Here, I will talk about the insights we have gained through teaching CartoDB users, building libraries such as Torque and Odyssey.js, and creating innovative maps online. Some of my maps have included FOSS4G award winners (NYCHenge and PLUTO Data Tour) as well as dozens of unique and interesting experiments to combine interaction and multimedia with maps or trying to find the limits of what we call a map. If we plan to keep mapping relevant and exciting, it is important that we keep finding the exciting new ways to bend technology to engage people. The map has an interesting future over the coming years and here I will talk about some of the ways we should expect it to go and what it means for us as geospatial software developers.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
52:28 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

The Toolmaker’s Guide

Opening Keynote, FOSS4G 2014, Portland, Oregon
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:27 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Js.Geo part Deux recap

For those of you sad pandas who couldn't make JS.geo on Tuesday, we will give a quick intro as to why scheduling was so hard this year, a quick tour of some of the amazing demos, highlights of the discussion from the day, and wrap up with what we would like to do to see it go smoother next year. Be there or be square (actually all that would happen is you would miss out on the coolest tech demo'ed at FOSS4G)!
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:43 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

projections in web browsers are terrible and you should be ashamed of yourself

The JavaScript port of proj4 was (relatively) recently moved from subversion to github and updated to use modern build tools.The talk will discuss some of the differences between desktop and web environments when it comes to projections and CRS, other new projects that take a different perspective on projections (like topojson), and why you can't just use an EPSG number in your browser (and should be ashamed of yourself wanting to).
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
35:38 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Mapping in GeoServer with SLD and CSS

Various software can style maps and generate a proper SLD document for OGC compliant WMS like GeoServer to use. However, in most occasions, the styling allowed by the graphical tools is pretty limited and not good enough to achieve good looking, readable and efficient cartographic output. For those that like to write their own styles CSS also represents a nice alternatives thanks to its compact-ness and expressiveness.Several topics will be covered, providing examples in both SLD and CSS for each, including: mastering multi-scale styling, using GeoServer extensions to build common hatch patterns, line styling beyond the basics, such as cased lines, controlling symbols along a line and the way they repeat, leveraging TTF symbol fonts and SVGs to generate good looking point thematic maps, using the full power of GeoServer label lay-outing tools to build pleasant, informative maps on both point, polygon and line layers, including adding road plates around labels, leverage the labelling subsystem conflict resolution engine to avoid overlaps in stand alone point symbology, blending charts into a map, dynamically transform data during rendering to get more explicative maps without the need to pre-process a large amount of views. The presentation aims to provide the attendees with enough information to master SLD/CSS documents and most of GeoServer extensions to generate fast, appealing, informative and readable maps.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:32 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

An Automated, Open Source Pipeline for Mass Production of 2 m/px DEMs from Commercial Stereo Imagery

We have adapted the NASA Ames Stereo Pipeline (ASP) - a suite of automated, open source, command-line photogrammetry tools originally developed for NASA planetary missions - to process high-resolution stereo satellite imagery of the Earth. These tools are multithreaded, memory efficient and scalable, which enables processing of "big image data" (e.g., 16-bit panchromatic WorldView images with dimensions ~36000 x 460000 px). We have deployed this pipeline on the NASA Pleiades supercomputer to generate ~2 m/px digital elevation models (DEMs) and ~0.5 m/px orthoimages for thousands of WorldView-1/2 along-track stereopairs. New ASP tools mitigate systematic DEM artifacts and allow for automated, a posteriori DEM coregistration using iterative closest point algorithms. When existing control data are available (e.g. LiDAR, GPS), automated alignment routines offer sub-meter horizontal and vertical DEM accuracy.Our research applications focus on ice sheet dynamics in Greenland/Antarctica and ice/snow evolution in the Pacific Northwest. We have developed an additional collection of tools for DEM analysis, including utilities to produce maps of 3D surface displacement (velocity) vectors and eulerian/lagrangian elevation change. We present the following case studies to highlight the capabilities of these data and our open source workflow:-A 57+ DEM timeseries from 2008-2013 for Greenland's most dynamic outlet glacier, revealing >40 m/yr interannual thinning and large seasonal variability-Annual DEM mosaics that reveal the ongoing evolution of West Antarctica's "weak underbelly", an area roughly the size of New Mexico-Repeat DEM timeseries for Mt. St. Helen's showing volcanic dome growth, glacier advance, canopy height, fluvial erosion/deposition, and landslides.For many applications, DEMs derived from high-resolution satellite imagery are comparable to those derived from airborne LiDAR data, with the advantage of global, on-demand tasking capabilities and reduced costs. Archived commercial stereo imagery is available at no cost to federal employees or federally-funded researchers, and the tools/methods highlighted here offer an automated, open source alternative to traditional, GUI-based, commercial photogrammetry software packages. https://github.com/NeoGeographyToolkit/StereoPipeline
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Exposing NASA's Earth Observations

The satellites which comprise NASA's Earth Observing System (EOS) have a long history of capturing rich datasets with global coverage over extended periods of time. While the data itself is rich (and open!), it can be a daunting task for uninitiated users to find suitable datasets, learn the data format, and subsequently find interesting phenomena. Even for those who are familiar with the data, it can be a time consuming process. But thanks to the proliferation and maturity of open source geospatial software, NASA has been able to build an imagery ingest pipeline, open source tiled imagery server, and open source, web-based mapping client to encourage exploration and discovery of NASA datasets. This talk will describe how NASA is building these capabilities through the Global Imagery Browse Services (GIBS) and Worldview client, demonstrate how others are building upon them, and show what it takes to integrate NASA imagery into clients using the GIBS API.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:33 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Gimme some YeSQL ! - and a GIS -

So long NoSQL, here is YeSQL !Not long ago, PostgreSQL was the the most advanced OpenSource relational database. With the latest version 9.4, it became an over-powerful mutant : the most advanced OpenSource Object-Oriented relational and/or non-relational, Spatial, SQL and/or NoSQL database. For the sake of simplicity, let us call it a YeSQL database.This presentation will introduce you to the feature galore of PostgreSQL, giving insights into the latest improvements from a user point of view. Of course some GIS inclination will drive this talk, and show you how you can take advantage of spatial extensions together with PostgreSQL core features.PostgreSQL 9.4 is an important milestone for various reason : a lot of new outstanding features, and core improvements which prefigure a whole world of new use cases. The main feature from a user perspective, giving PostgreSQL this YeSQL title, is probably the new JSONB storage. A fine marriage between the Hstore extension and JSON support, it literally transforms PostgreSQL into a document database (think MongoDB in PostgreSQL without data losses).We will therefore present great PostgreSQL 9.4 features, and some ways to use them with spatial data, leveraging the latest PostGIS and PointCloud extensions :* Exclusion constraints* KNN search* Lateral joins* Window functions* (writeable) (recursive) CTE* Automatic updateable views* Materialized views* JSON, more JSON, JSON indexing, JSON proceduresÉ* Foreign Data Wrappers* Logical decoding and future applications* More JSON ? GeoJSON ?The feature set available to PostgreSQL users is growing with every release, as are performances. And the spatial part of it is not lagging behind. It is a must-use platform for data management, data infrastructures. And a GIS.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:33 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

UrbanSim2: Simulating the Connected Metropolis

<style type="text/css"><!--td br --></style>UrbanSim is an open source software platform for agent-based geospatial simulation, focusing on the spatial dynamics of urban development. å Since its creation UrbanSim has been used in the official planningå processes for at least a dozen regional governments which were usedå to help allocate billions of dollars in regional investments in transportationå infrastructure.UrbanSim was first conceptualized in the late 1990's and implementedå using the Java programming language. The technology landscape forå scientific computing changed dramatically after that, and by 2005å UrbanSim was converted to Python, making heavy use of Numpy to vectorizeå calculations. By 2014, it became clear that UrbanSim should be reimplementedå again to take advantage of significant advances in the libraries availableå for scientific Python. The new version of UrbanSim, called UrbanSim2,å makes extensive use of community-supported scientific Python librarieså to reduce the amount of domain-specific customized code to a minimum.UrbanSim is an excellent case study for the power of leveraging thework of the scientific programming community as scaffolding for adomain-specific application, as opposed to building an extensive customizedå solution in each domain. Additionally, the open and participatoryå nature inherent in nearly all of the open source projects describedå here has been particularly embraced by governments, who are oftenå reticent to support large commercial institutions and balkanized andå private data formats and software tools.<style type="text/css"><!--td br -->UrbanSim is an open source software platform for agent-based geospatialå simulation, focusing on the spatial dynamics of urban development. å Since its creation UrbanSim has been used in the official planningå processes for at least a dozen regional governments which were usedå to help allocate billions of dollars in regional investments in transportationå infrastructure.UrbanSim was first conceptualized in the late 1990's and implementedå using the Java programming language. The technology landscape forå scientific computing changed dramatically after that, and by 2005å UrbanSim was converted to Python, making heavy use of Numpy to vectorizeå calculations. By 2014, it became clear that UrbanSim should be reimplementedå again to take advantage of significant advances in the libraries availableå for scientific Python. The new version of UrbanSim, called UrbanSim2,å makes extensive use of community-supported scientific Python librarieså to reduce the amount of domain-specific customized code to a minimum.UrbanSim is an excellent case study for the power of leveraging thework of the scientific programming community as scaffolding for adomain-specific application, as opposed to building an extensive customizedå solution in each domain. Additionally, the open and participatoryå nature inherent in nearly all of the open source projects describedå here has been particularly embraced by governments, who are oftenå reticent to support large commercial institutions and balkanized andå private data formats and software tools.--></style>
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
29:48 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Running Your Own Rendering Infrastructure

In addition to hosting the popular OSM-base Toner, Watercolor, and Terrain tile sets, Stamen incorporates custom cartography into much of our client work. This is a behind-the-scenes walkthrough covering the evolution of our rendering infrastructure and the peripheral services that help to make our work unique. Topics covered include the image processing used for Watercolor and Map Stack, raster manipulation for Terrain, Surging Seas, and the Chesapeake Bay Program, as well as the use of vector tiles (for both OSM and other data) to support Pinterest and future work.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:40 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GeoNetwork opensource 3.0

The presentation will provide an insight of the new functionality available in the latest release of the software. Publishing and managing spatial metadata using GeoNetwork opensource has become main stream in many Spatial Data Infrastructures. GeoNetwork opensource 3.0 comes with a new, clean user interface based on AngularJS, Bootstrap and D3. Other topics presented are related to performance, scalability, usability, workflow, metadata profile plugins and catalogue services compliance. Examples of implementations of the software will also be given, highlighting several national European SDI portals as well as work for Environment Canada and the collaboration with the OpenGeoPortal project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Implementing change in OpenStreetMap

In 2013, I was involved in two substantial technical changes to OpenStreetMap: a new default editor and a redesign of the website. Because OpenStreetMap is a collaborative project, these were as much social as technical efforts. This talk will explore the social dynamics of collaborative open source projects and the techniques that helped us successfully implement technical change in a social environment that by nature tends to be change averse.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:43 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Tilez: serving seamless polygons in the browser with TopoJSON and Node.js

This talk will introduce the Tilez project, which provides aNode.js-based realisation of a Tile Map Service tiles in both GeoJSON andTopoJSON formats. This formats provide a seamless and highly performant usermapping experience in both OpenLayers and Leaflet.The key to fast display of vector geometries in Tilezz lies in the use oftiles, which leverage both local and server-side caching. Whilst linear features lend themselves easily to tiling, polygons have traditionally represented more of a challenge.Tilez provides further efficiencies by using TopoJSON as a transport formatbetween the server and the client. Tilez implements all these improvements to support web-based vector tiling, delivering good performance under heavy load through Node,js and CouchDB-based caching, and efficient transport through TopoJSON. This talk will cover Tilez and the practical aspects of its implementation together with use cases from the Australian Urban Research Infrastructure Network (AURIN - www.aurin.org.au).
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:34 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

OpenLayers 3: a unique mapping library

We've rewritten OpenLayers from the ground up with the goal of offering a powerful, high-performance library leveraging the latest in web technologies. This talk will present the latest advances of the library, focusing on aspects that make OpenLayers 3 stand out. OpenLayers 3, for example, uses technologies, techniques and algorithms that enable high-quality and high-performance vector rendering. Come learn about the optimizations and techniques OpenLayers 3 uses internally, and how you can leverage them in your next web-mapping applications.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Scaling for NYC while Tracking Plows

In the winter of 2012, NYC's Department of Information Technology and Telecommunications (DoITT) was tasked with developing an application to track snow vehicle operations. The DoITT GIS team was given a mandate to have the application in production before the end of the winter. Due to the aggressive schedule, our approach was to get something up as quickly as possible while enhancing and improving over time. Beyond the schedule constraint, additional challenges were minimal requirements and decision-making by committee with no clear business owner.Three major tasks were required to complete the project: scale the existing infrastructure to better handle the expected demand, determine an approach for communicating the information to the public in a legible and understandable way, and develop and test the application. The team quickly undertook a multi-pronged approach to complete these tasks within a roughly two-month timeframe.Of all the impossible tasks, scaling the infrastructure was the most challenging and difficult. High-profile application launches in NYC that come with press announcements tend to garner traditional and social media coverage and with that national exposure and demand. And although the application would have been a perfect candidate to deploy in the cloud, that was not an option. Additional servers were added and the application was optimized and tuned for performance. To do so, multiple-layers of caching were employed including GeoWebCache and a Content Delivery Network. In terms of visualizing the data, we conducted a quick review of existing public-facing applications. There were not many examples at the time with most cities choosing to show 'breadcrumbs' of a plow's path. We felt this method was not an effective way of conveying plow coverage; our objective being, to show which streets had been plowed and not to show where a plow had been at specific time. As such, we decided on visualizing the data by the time a street was last plowed. Five time-buckets were established and the street segments were color-coded based on the last GPS ping received on the segment. Every 15 minutes an ETL pulls the GPS data and renders tiles using GeoServer and GeoWebCache.The application, PlowNYC, was developed using open source and commercial software and custom code. These include OpenLayers, Geoserver, GeoWebCache, GeoTools and Oracle. Since its release, the application has been enhanced to handle greater traffic, support mobile clients and to simplify the interface. The presentation will cover these aspects of the project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
14:08 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A jumpstart for your mobile map app

Would you like to get started programming mobile mapping applications? There's a lot to keep in mind: a responsive layout, a mapping framework, positioning of controls and buttons, offline caching of tiles, and finally compiling it all into a mobile app.This presentation walks you through some problems and solutions, culminating in MobileMapStarter. Techniques discussed include jQuery Mobile, Leaflet, and PhoneGap/Cordova.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:56 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Getting Started with OpenLayers 3

OpenLayers 3 is here! Now it's time to dive in and get mapping. Join us for an overview of OL3 from a user's perspective. We'll cover common use cases and cool features of the library you might not have heard about. Our goal in this presentation is to get you comfortable with the OpenLayers 3 style of mapping - providing an introduction to raster and vector basics, discussing tips for integration with other JavaScript libraries, and exposing you to the build tools so you can choose just the functionality you need for your mapping application.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:23 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Supporting Open Data with Open Source

Within the US Federal Government, there is a trend towards embracing the benefits of open data to increase transparency and maximize potential innovation and resulting economic benefit from taxpayer investment. Recently, an Executive Order was signed specifically requiring federal agencies to provide a public inventory of their non-restricted data and to use standard web-friendly formats and services for public data access. For geospatial data, popular free and open source software packages are ideal options to implement an open data infrastructure. NOAA, an agency whose mission has long embraced and indeed centered on open data, has recently deployed or tested several FOSS products to meet the open data executive order. Among these are GeoServer, GeoNode, and CKAN, or Comprehensive Knowledge Archive Network, a data management and publishing system.This talk will focus on how these three FOSS products can be deployed together to provide an open data architecture exclusively built on open source. Data sets hosted in GeoServer can be cataloged and visualized in GeoNode, and fed to CKAN for search and discovery as well as translation to open data policy-compliant JSON format. Upcoming enhancements to GeoNode, the middle tier of the stack, will allow integration with data hosting backends other than GeoServer, such as Esri's ArcGIS REST services or external WMS services. We'll highlight NOAA's existing implementation of the above, including the recently-deployed public data catalog, https://data.noaa.gov/, and GeoServer data hosting platform, as well as potential build out of the full stack including the GeoNode integration layer.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:35 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Managing public data on GitHub: Pay no attention to that git behind the curtain

The Atlanta Regional Commission (ARC) continuously solicits feedback on transportation data from local government partners. Historically, this process has taken the form of lots of markings on plotted maps with immeasurable amounts of manual work on the tail end to organize and interpret this feedback. Many tools developed specifically for this process today often fall short of the needs of agencies (such as geospatial presentation and tracking comments), yet the cost to develop or implement custom software is generally out of reach for government agencies.This presentation introduces a case study of the process to develop geospatial collaboration tools for managing transportation data directly hosted on GitHub pages (currently in development at http://atlregional.github.io/plan-it/ and http://atlregional.github.io/fc-review/). This approach was partially inspired by GitHub's recent features additions that make collaborating on geospatial data simple and elegant. Because these data span both functional and jurisdictional divisions, many of the greatest challenges have been project management related --- coordinating stakeholder feedback and project requirements. However, by utilizing the existing git/GitHub infrastructure, many of these requirements can be managed cost effectively. Moreover, the framework allows for direct integration with other application environments via the GitHub API and GDAL Tools, ensuring that local modifications to project data are committed back to the data repository.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
08:50 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Small town GIS - Leveraging GitHub, QGIS and community members to manage local data

Langley is a small rural community on Whidbey Island in Washington State. Like so many other small rural communities, Langley is faced with limited resources but a great need to better understand the geospatial context of the local environment. Through the use of open source tools, including QGIS, GDAL/OGR, PostGIS, GRASS, and others, as well as free open data hosting at GitHub, Langley has started to better leverage existing data and attract community members to participate in gathering new and useful data. Small scale "civic hacking" is alive and well... and provides opportunities and challenges that are both similar and different than that of the larger urban counterparts engaged in large scale civic hacking.This talk with go over the technical aspects of the workflows that have proven fruitful for engaging local community members of small rural communities in both data creation and curation. We will also look at the social aspects of getting local governments engaged in the process of leveraging community resources for open access to data and tools.https://github.com/langleywa
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:11 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

An Open Source Approach to Communicating Weather Risks

Weather data is a critical element in the decision making process for a vast number of entities and its timely and accurate portrayal is essential. The U.S. National Weather Service has utilized a combination of Open Source projects including: OpenLayers, Qooxdoo, PostGIS and Flot among others to create a mash-up called the Enhanced Data Display or EDD (preview.weather.gov/edd) to promote the development of a Weather Ready Nation. The EDD provides a platform to quickly communicate past, current and future weather conditions. What happens over the next couple of hours to a week dictates the agenda of everything from strategic resource placement to what to wear to work. More often than not, the weather forecast is not binary - there is always some probabilistic component that results from the inherent chaos of a 4-D fluid wrapped around a spinning sphere. Luckily, the EDD makes use of a variety of techniques that leverage Open Source technologies to present forecasts in both deterministic and probabilistic forms. The EDD contains many visual displays that refine bulky meteorological datasets into palatable forms. Whether you are looking to see what hazards you may face along a travel route or trying to find a heat map of how many people will be impacted by a tornado warning, the EDD can display this quickly. Finally, the ability to combine EDD layers with your own data makes this an extremely powerful application. EDD is a good example of how leveraging Open Source resources can result in an exquisite product.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
out of 4 pages
Loading...
Feedback

Timings

  217 ms - page object
   72 ms - search
  106 ms - highlighting
   64 ms - highlighting/31624
   75 ms - highlighting/31660
   68 ms - highlighting/31643
   57 ms - highlighting/31634
   58 ms - highlighting/31637
   62 ms - highlighting/31689
   65 ms - highlighting/31766
   51 ms - highlighting/31594
   58 ms - highlighting/31613
   19 ms - highlighting/31644
   54 ms - highlighting/31604
   57 ms - highlighting/31688
   66 ms - highlighting/31714
   64 ms - highlighting/31736
   95 ms - highlighting/31662
   93 ms - highlighting/31602
   39 ms - highlighting/31763
   54 ms - highlighting/31645
   56 ms - highlighting/31617
   54 ms - highlighting/31715
   70 ms - highlighting/31758
   38 ms - highlighting/31640
   33 ms - highlighting/31628
   60 ms - highlighting/31663
   74 ms - highlighting/31619
   25 ms - highlighting/31639
   31 ms - highlighting/31611
   67 ms - highlighting/31753
   24 ms - highlighting/31676
   28 ms - highlighting/31974
   25 ms - highlighting/31703
   36 ms - highlighting/31607
   36 ms - highlighting/31666
   27 ms - highlighting/31692
   20 ms - highlighting/31742
   29 ms - highlighting/31626

Version

AV-Portal 3.7.0 (943df4b4639bec127ddc6b93adb0c7d8d995f77c)