Show filters Hide filters

Refine your search

Publication Year
1-36 out of 127 results
Change view
  • Sort by:
31:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A glimpse of FOSS4G in the environmental consulting arena

In the highly competitive world of environmental consulting, being able to manage large volumes of data and deliver timely, accurate information based on that data is critical to our ongoing success. As a relatively small company, we recognized that we needed something unique to survive and prosper in an industry dominated by huge corporations. Over the past 7 years we have made a considerable effort to shift over to a FOSS4G environment, with a belief that, not only would this decision enhance what we already do well, but give us the competitive edge we would need to ensure future prosperity.A brief presentation of a snapshot of our current FOSS4G status, how we arrived here and a workflow tour beginning at the data acquisition stage looking at the feed through our patented EDMS QA/QC system into PostgreSQL followed by a demonstration of a just a few of our many custom web/mobile/desktop applications that rely on the PostgreSQL back end database and how these solutions are able to deliver accurate and timely information to employees and clients alike, and finally, where to next.We take advantage of multiple FOSS4G including the likes of OpenLayers, MapServer, PostgreSQL/PostGIS, PHP, D3 and jQuery. This combination places us in an ideal position to respond to client needs with the ability to rapidly deliver almost any request.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:02 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Integrating FOSS4G into an enterprise system for Disaster Management

ROGUE (Rapid Open Geospatial User-Driven Enterprise) was a project funded under the Joint Capability Technology Demonstration (JCTD) Program from the U.S. Department of Defense. Boundless and LMN Solutions, LLC implemented the project, with the Pacific Disaster Center (PDC) serving in the role of project Transition Manager. The project's goal was to improve the abilities of the OpenGeo Suite to ingest, update, and distribute non-proprietary feature data in a distributed, collaborative, and occasionally disconnected environment. Under this project, PDC integrated the following technologies into its decision support system for emergency managers named DisasterAWARE:- GeoGit: Versioned replication of spatial data across multiple sites, supports disconnected editing and conflict resolution. - Arbiter: Android app for field data collection, syncs to GeoNode.- MapLoom: GeoNode GUI for spatial data editing and management. - KML Uploader: Functionality to upload KML for storage in PostGIS and served via GeoServer. - GeoServices REST (GSR): Extends GeoServer to publish data using the REST methodology of ArcGIS Server. This presentation will cover the integration of these components into DisasterAWARE, along with the security framework implemented for all components.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:08 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

The role of geospatial open source (FOSS4G) as a component of hybrid systems

Currently, it is rare that an organization faces a choice between "just commercial" or "just open source" geospatial software. Increasingly, the answer isn't about "or", it is now about solutions that may involve both. Indeed, Commercial systems - both installed software and cloud-based platforms - may have both functional and cost effectiveness gaps. Free and open source software for geospatial (FOSS4G) can be a critical component that helps to bridge these gaps. And, given that organizations may have large existing investments and sunk costs in commercial software it can make sense to leverage those investments by building hybrid systems that incorporate open source components. This presentation will describe several specific examples of hybrid systems that incorporate geospatial open source (e.g., OpenGeo Suite) alongside both Esri and Google components. The presentation will focus on both the business reasoning for choosing hybrid as well as the technical approaches taken. Ultimately, hybrid projects or systems can be very important as they provide a key entry-point for geospatial open source into organizations that might not otherwise consider it.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:30 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Educating 21st Century Geospatial Technology Industry Workers with Open Source Software

Where are GIS educators to go when they need educational material to teach FOSS4G in their academic programs? While commercial vendors, like Esri through their Virtual Campus, have a wealth of training material available, there are very limited resources for educators seeking to teach FOSS4G. The new QGIS Academy program is the first national effort to provide this much need academic infrastructure. The Academy has produced a set of five full GIS courses, based on the latest version of QGIS, to offer educators and others for free under the Creative Commons CC BY license. These courses have been under development since 2010 and use the US Department of Labor Geospatial Technology Competency Model (GTCM) as the basis for their scope and sequence. This presentation will demonstrate the courses and discuss their development and future plans.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:43 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A FOSS4G-Based Geo Connection System for Education and Research

The presentation will examine the selection, installation, and the current and planned use of a CentOSÐbased system running FOSS4G to support student education, research, and projects with state and local organizations. A system was designed to foster collaborative work between an educational institution and the community. Specifically, it is being used to better understand and enhance distribution systems associated with local agriculture producers and consumers. Part of this work is the development of a web-based system to process and serve geospatial information in an effort to improve communication between food producers and consumers, i.e. restaurants, farmers markets, and Community Supported Agriculture (CSA). This presentation will demonstrate how the system was built to:¥ Continue investigation of the general principles and approaches for designing food distribution systems to enhance local food networks¥ Provide access to a web-based system for geospatial computations and data management¥ Serve as a resource for the community to access information in support of the broader goals of the CEDS research center¥ Act as an map server¥ Act as the server supporting deployment of geo-aware mobile phone applications implemented by the department to enhance the learning process on field trips and other field work¥ Collect, process, store, and serve data from environmental sensors to support education in weather, climate, and the environment
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Introduction to the geospatial goodies in Elasticsearch

In this session we'll introduce how you can work with spatial data in Elasticsearch - The Open Source, distributed, RESTful Search Engine. We'll provide a general introduction on how to index spatial data into Elasticsearch, then cover off on using spatial query and filters, before finishing up showing you how you can visualise and interact with spatial data stored in Elasticsearch using Kibana.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

What's new in Cesium: the open-source alternative for 3D maps

When building 3D mapping apps, we no longer have to deal with closed feature-sets, limited programming models, temporal data challenges and bulky deployments. This talk introduces Cesium, a WebGL-based JavaScript library designed for easy development of lightweight web mapping apps. With live demos, we will show Cesium's major geospatial features including high-resolution global-scale terrain, map layers and vector data; support for open standards such as WMS, TMS and GeoJSON; smooth 3D camera control; and the use of time as a first-class citizen. We will show how Cesium easily deploys to a web browser without a plugin and on Android mobile devices.Since last year's talk at FOSS4G NA, Cesium has added 3D models using the open-standard glTF, a large geometry library and higher-resolution terrain.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:41 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Geodesign: An Introduction to Design with Geography

Geodesign, at its most basic, is design with geography. It is the combination of the tools and techniques geographers and other geoscientists use to understand our world with the methods and workflows designers use to propose solutions and interventions. For instance, the typical master planning process in which GIS-based knowledge is separated from the design process can be turned into a geodesign task by sketching buildings and other land uses directly within a GIS, and seeing indicators update on the fly as various data graphics. This can then allow the designer(s) to pinpoint specific design interventions based on live feedback from geospatial information.Over the last 10 years, technology has facilitated an explosive growth in geodesign as both a framework for solving problems and a toolkit of geospatial analyses that feed into that framework. The growth of the Geodesign Summit in Redlands, CA from 2010 to 2014 is an example of the demand for this sort of framework.Parallel to the rise of geodesign, the tools represented by FOSS4G have also been evolving into sophisticated tools capable of taking on the needs of geodesign. However, to date there's been too little discussion of how to take the framework and working methods of geodesign and accomplish them with open source tools. This session will connect those dots by taking the typical parts of a geodesign framework (suitability analysis, sketching/designing, evaluating/comparing, iterating) and outlining our own experience making use of open source tools for geodesign. In particular, we will focus on how the interoperability of open source tools and the growth of web-based geospatial tools can support (and evolve!) the ways that geodesign is done.This presentation will address:What is geodesign: the conceptual framework and typical use cases for geodesignWhere are we: workflows and tool stacks we've used and seen others use to dateWhere could we go: identifying current gaps and pain points in existing stacks and possible solutions from emerging technologies
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:18 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

How to tell stories and engage an audience with maps

Maps and stories go together like two peas in a pod. Why is that and how do we take advantage of it? Through my work at CartoDB, I have been able to think deeply about the role of storytelling for today's map makers. Here, I will talk about the insights we have gained through teaching CartoDB users, building libraries such as Torque and Odyssey.js, and creating innovative maps online. Some of my maps have included FOSS4G award winners (NYCHenge and PLUTO Data Tour) as well as dozens of unique and interesting experiments to combine interaction and multimedia with maps or trying to find the limits of what we call a map. If we plan to keep mapping relevant and exciting, it is important that we keep finding the exciting new ways to bend technology to engage people. The map has an interesting future over the coming years and here I will talk about some of the ways we should expect it to go and what it means for us as geospatial software developers.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
52:28 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

The Toolmaker’s Guide

Opening Keynote, FOSS4G 2014, Portland, Oregon
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:07 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

ZOO-Project 1.4.0: news about the Open WPS Platform

ZOO-Project is an Open Source Implementation of the OGC Web Processing Service (WPS), it was released under a MIT/X-11 style license and is currently in incubation at OSGeo. It provides a WPS compliant developer-friendly framework to easilly create and chain WPS Web services.This talk give a brief overview of the platform and summarize new capabilities and enhancement available in the 1.4.0 release.A brief introduction to WPS and a summary of the Open Source project history with its direct link with FOSS4G will be presented. Then an overview of the ZOO-Project will serve to introduce new functionalities and concepts available in the 1.4.0 release and highlight their interrests for applications developpers and users. Then, examples of concrete services chain use will illustrate the way ZOO-Project can be used to build complete applications in a flexible way by using the service chain concept, creating new service by implementing intelligent chain of service through ZOO-API but also by taking advantage of the publication using OGC standards. Various use of OSGeo softwares, such as GDAL, GEOS, PostGIS, pgRouting, as WPS services through the ZOO-Project will be illustrated by applications presentation.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
20:50 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Responsive Interactivity: Toward User-centered Adaptive Map Experiences

In recent years, the web design community has moved quickly to accommodate the various devices and methods for accessing web content. The FOSS4G and wider development community have responded to this paradigm of adapting the layout of content to scale to the device of the user by creating and leveraging tools such as Leaflet and D3. However, there remains a lack of knowledge, understanding, and conversation about what it truly means to create a map experience that meets the present needs and expectations of the user. Designing an adaptive map should go beyond simply fitting it into a responsive layout. User variables, such as the mode of interaction and location-based needs, raise map-specific UI design questions that this community is uniquely positioned to answer.This talk will explore what it could mean cartographically and experientially to adapt all aspects of the map experience to the needs of the user using principles already embraced in other communities. Our goal is to provoke a wider discussion of how we, as a community, can work toward these objectives. Regardless of expertise level, anyone who is involved with the creation of interactive web maps has inevitably come across the problems associated with, and will benefit from involvement in this conversation.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
40:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Open Source is People

Keynote Speech, FOSS4G 2014, Portland, Oregon.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
1:02:01 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Mapping for Investigations

Closing Keynote Speech, FOSS4G 2014, Portland, Oregon.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:16 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

pyModis: from satellite to GIS maps

One year after the first public presentation of pyModis at FOSS4G 2013 a lot of improvements have been implemented in the pyModis library. The most important news are that each command line tool now offers a graphical user interface to assist inexperienced users. Furthermore, the MODIS Reprojection Tool (MRT) is not longer mandatory in order to mosaic and reproject the original MODIS data as GDAL is now supported.Hence the most important improvement was the reimplementation of existing MRT component to use the Python binding of GDAL. This was basically driven by the fact that MRT does not properly perform geodetic datum transforms as discovered in the daily work with MODIS data within the PGIS-FEM group leading to shifted reprojection output. With the new GDAL support not only this problem has been solved but also the installation greatly simplified. pyModis is used all over the world in academic, governmental and private companies due to its powerful capabilities while keeping MODIS processing workflows as simple as possible.The presentation will start with a small introduction about pyModis and its components, the library and the tools. This part is followed by news about the latest pyModis release and indications about future developments.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:15 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GRASS GIS 7: your reliable geospatial number cruncher

GRASS GIS (Geographic Resources Analysis Support System) looks back to the longest development history in the FOSS4G community. Having been available for 30 years, a lot of innovation has been put into the new GRASS GIS 7 release. After six years of development it offers a lot of new functionality, e.g. enhanced vector network analysis, voxel processing, a completely new engine for massive time series management, an animation tool for raster and vector map time series, a new graphic image classification tool, a "map swiper" for interactive maps comparison, and major improvements for massive data analysis (see also http://grass.osgeo.org/grass7/). The development was driven by the rapidly increasing demand for robust and modern free analysis tools, especially in terms of massive spatial data processing and processing on high-performance computing systems. With respect to GRASS GIS 6.4 more than 10,000 source code changes have since been made.GRASS GIS 7 provides a new powerful Python interface that allows users to easily create new applications that are powerful and efficient. The topological vector library has been improved in terms of accuracy, processing speed, and support for large files. Furthermore, projections of planets other than Earth are now supported as well. Many modules have been significantly optimized in terms of speed even by orders of magnitude. The presentation will showcase the new features along with real-world examples and the integration with QGIS, gvSIG CE, R statistics, and the ZOO WPS engine.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
51:39 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

PostGIS Feature Frenzy

PostGIS has over 300 functions, which in turn can be used with the many features of the underlying PostgreSQL database. This talk covers some basic and not- so- basic ways to use PostGIS/PostgreSQL to process spatial data, to build infrastructures, and to do crazy things with data. Consider the possibilities: raster, topology, linear referencing, history tracking, web services, overlays, unions, joins, constraints, replication, json, xml, and more!
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
52:09 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Don't Copy Data! Instead, Share it at Web-Scale

Since its start in 2006, Amazon Web Services has grown to over 40 different services. S3, our object store, one of our first services, is now home to trillions of objects and regularly peaks at 1.5 million requests/second. S3 is used to store many data types, including map tiles, genome data, video, and database backups. This presentation's primary goal is to illustrate best practice around open data sets on AWS. To do so, it showcases a simple map tiling architecture, built using just a few of those services, CloudFront (CDN), S3 (object Store), and Elastic Beanstalk (Application Management) in combination with FOSS tools, Leaflet, Mapserver/GDAL and Yas3fs. My demo will use USDA's NAIP dataset (48TB), plus other higher resolution data at the city level, and show how you can deliver images derived from over 219,000 GeoTIFFs to both TMS and OGC WMS clients for the 48 States, without pre-caching tiles while keeping your server environment appropriately sized via auto-scaling. Because the NAIP data sits in a requester-pays bucket that allows authenticated read access, anyone with an AWS account has immediate access to the source GeoTIFFs, and can copy the data in bulk to anywhere they desire. However, I will show that the pay-for-use model of the cloud, allows for open-data architectures that are not possible with on-prem environments, and that for certain kinds of data, especially BIG data, rather than move the data, it makes more sense to use it in-situ in an environment that can support demanding SLAs.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:22 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Serving high-resolution sptatiotemporal climate data is hard, let's go shopping

The world is a big place and time is infinite. Scientists who study any aspect of the Earth's climate are immediately faced with the exponentially growing amount of data that are required to represent properties of the climate in both time and space. The bulk of these data is a substantial barrier to extracting meaningful information from their contents. This barrier can be prohibitive to smaller-scale researchers and communities that want to study and understand the impact of the climate on their localities. Fortunately, a substantial amount of free and open source software (FOSS) exists upon which one can build a great geospatial data application.The Pacific Climate Impacts Consortium (PCIC), a regional climate services provider in British Columbia, Canada, has been making a concerted effort to use geospatial FOSS in order to expand the availability, comprehensibility and transparency of big climate data sets from the Coupled Model Intercomparison Project (CMIP5) experiment. With a full stack of geospatial FOSS and open protocols we have built and deployed a web platform capable of visualizing and distributing high-resolution spatiotemporal raster climate data.Our web application consists of:+ back-end storage with raw NetCDF4/HDF5 files+ a PostgreSQL/PostGIS database for indexed metadata+ ncWMS for maps and visualization+ the PyDAP OPeNDAP server for data requests+ a web user interface to tie it all togetherThis presentation will provide a case study for enabling scientific collaboration using FOSS and open standards. We will describe our application architecture, present praise for and critique of the components we used, and provide a detailed discussion of the components that we had to improve or write ourselves. Finally, though our use case is specific to climate model output, we will provide some commentary as to how this use case relates to other applications of spatiotemporal data.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Exposing NASA's Earth Observations

The satellites which comprise NASA's Earth Observing System (EOS) have a long history of capturing rich datasets with global coverage over extended periods of time. While the data itself is rich (and open!), it can be a daunting task for uninitiated users to find suitable datasets, learn the data format, and subsequently find interesting phenomena. Even for those who are familiar with the data, it can be a time consuming process. But thanks to the proliferation and maturity of open source geospatial software, NASA has been able to build an imagery ingest pipeline, open source tiled imagery server, and open source, web-based mapping client to encourage exploration and discovery of NASA datasets. This talk will describe how NASA is building these capabilities through the Global Imagery Browse Services (GIBS) and Worldview client, demonstrate how others are building upon them, and show what it takes to integrate NASA imagery into clients using the GIBS API.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
1:02:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Making Space for Diverse Mappers

<p>Diverse communities provide the space for different points of view to find voice. Historically open source communities have balanced the contribution of various perspectives and expertises. We are often industry examples of remote cultural collaboration. But the nature of collaboration is changing, where diversity must stretch further across geographies to foster a wider scope of difference. One that includes the other sides of privileged space. In this session, I will present on why ideological diversity can be at the forefront of community structures by introducing three personal cornerstones - Mapzen, Maptime, and GeoNYC. This interactive session highlights how embracing a range of cultural perspectives and technical expertise allows communities to create the unexpected. We'll review success and challenges while performing our own mini GeoNYC complete with 3-word introductions and mapping fun. </p>
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:22 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

"Fast Big Data?" A High-Performance System for Creating Global Satellite Image Time Series

Description:We describe a system that transforms sequences of MODIS images covering the entire Earth into time-optimized data cubes to provide rapid access to time series data for various applications.Abstract:Satellite time series data are key to global change monitoring related to climate and land cover change. Various research and operational applications such as crop monitoring and fire history analysis rely on rapid access to extended, hyper-temporal time series data. However, converting large volumes of spatial data into time series and storing it efficiently is a challenging task. In order to solve this Big Data problem, CSIR has developed a system which is capable of automated downloading and processing of several terabytes of MODIS data into time-optimized "data cubes." This time series data is instantly accessible via a variety of applications, including a mobile app that analyzes and displays 14 years of vegetation activity and fire time series data for any location in the world. In this presentation we will describe the implementation of this system on a high-performance Storage Area Network (SAN) using open source software including GDAL and HDF5. We discuss how to optimally store time series data within HDF cubes, the hardware requirements of working with data at this scale as well as several challenges encountered. These include writing high-performance processing code, updating data cubes efficiently and working with HDF data in a multi-threaded environment. We conclude by showing visualizations of our vegetation and burned area time series data in QGIS, web apps, and mobile apps.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
29:48 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Running Your Own Rendering Infrastructure

In addition to hosting the popular OSM-base Toner, Watercolor, and Terrain tile sets, Stamen incorporates custom cartography into much of our client work. This is a behind-the-scenes walkthrough covering the evolution of our rendering infrastructure and the peripheral services that help to make our work unique. Topics covered include the image processing used for Watercolor and Map Stack, raster manipulation for Terrain, Surging Seas, and the Chesapeake Bay Program, as well as the use of vector tiles (for both OSM and other data) to support Pinterest and future work.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:26 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

"Do This, and also That: Integrating Open Source tools into traditional GIS shops"

This talk is intended for GIS users & managers who may be interested in open source GIS but aren't sure what the advantages to them might be, or who think Open Source GIS is nice in principle but are afraid there's no space for it in their workplace. In general, "Do This, and also That..." wants to address concerns of professionals who aren't sure how or why to make the leap from traditional/proprietary GIS tools into the wide world of Open Source GIS.Drawing from my own experiences, my goal is to gently present an integrated approach to open source GIS. This is not an "all or nothing" scenario: I want to show the audience how effective workflow solutions can involve both open source GIS as well as "traditional" proprietary GIS they are familiar with.I will briefly discuss common issues faced by GIS users, and explore the benefits of integrating open-source based workflows alongside proprietary GIS. I will cover use-cases for Leaflet and OpenLayers, OGR2OGR, PostGIS, and QGIS. Each use-case will demo a quick and friendly example of how a particular real-world issue might be addressed by the inclusion of one of these open source options into an existing GIS stack.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:40 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GeoNetwork opensource 3.0

The presentation will provide an insight of the new functionality available in the latest release of the software. Publishing and managing spatial metadata using GeoNetwork opensource has become main stream in many Spatial Data Infrastructures. GeoNetwork opensource 3.0 comes with a new, clean user interface based on AngularJS, Bootstrap and D3. Other topics presented are related to performance, scalability, usability, workflow, metadata profile plugins and catalogue services compliance. Examples of implementations of the software will also be given, highlighting several national European SDI portals as well as work for Environment Canada and the collaboration with the OpenGeoPortal project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
57:52 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Exploring Openness in Geospatial Education

This panel discussion will explore efforts to embed openness into geospatial education, including courses on open geospatial solutions as well as innovative teaching methods that help expand the audience who can engage with open geospatial systems such as MOOCs and open courseware.Panelists include Robert Cheetham (Azavea), Sara Safavi (RackSpace), Nuala Cowan (George Washington University), and Calvin Metcalf (AppGeo).
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:43 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Tilez: serving seamless polygons in the browser with TopoJSON and Node.js

This talk will introduce the Tilez project, which provides aNode.js-based realisation of a Tile Map Service tiles in both GeoJSON andTopoJSON formats. This formats provide a seamless and highly performant usermapping experience in both OpenLayers and Leaflet.The key to fast display of vector geometries in Tilezz lies in the use oftiles, which leverage both local and server-side caching. Whilst linear features lend themselves easily to tiling, polygons have traditionally represented more of a challenge.Tilez provides further efficiencies by using TopoJSON as a transport formatbetween the server and the client. Tilez implements all these improvements to support web-based vector tiling, delivering good performance under heavy load through Node,js and CouchDB-based caching, and efficient transport through TopoJSON. This talk will cover Tilez and the practical aspects of its implementation together with use cases from the Australian Urban Research Infrastructure Network (AURIN - www.aurin.org.au).
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Scaling for NYC while Tracking Plows

In the winter of 2012, NYC's Department of Information Technology and Telecommunications (DoITT) was tasked with developing an application to track snow vehicle operations. The DoITT GIS team was given a mandate to have the application in production before the end of the winter. Due to the aggressive schedule, our approach was to get something up as quickly as possible while enhancing and improving over time. Beyond the schedule constraint, additional challenges were minimal requirements and decision-making by committee with no clear business owner.Three major tasks were required to complete the project: scale the existing infrastructure to better handle the expected demand, determine an approach for communicating the information to the public in a legible and understandable way, and develop and test the application. The team quickly undertook a multi-pronged approach to complete these tasks within a roughly two-month timeframe.Of all the impossible tasks, scaling the infrastructure was the most challenging and difficult. High-profile application launches in NYC that come with press announcements tend to garner traditional and social media coverage and with that national exposure and demand. And although the application would have been a perfect candidate to deploy in the cloud, that was not an option. Additional servers were added and the application was optimized and tuned for performance. To do so, multiple-layers of caching were employed including GeoWebCache and a Content Delivery Network. In terms of visualizing the data, we conducted a quick review of existing public-facing applications. There were not many examples at the time with most cities choosing to show 'breadcrumbs' of a plow's path. We felt this method was not an effective way of conveying plow coverage; our objective being, to show which streets had been plowed and not to show where a plow had been at specific time. As such, we decided on visualizing the data by the time a street was last plowed. Five time-buckets were established and the street segments were color-coded based on the last GPS ping received on the segment. Every 15 minutes an ETL pulls the GPS data and renders tiles using GeoServer and GeoWebCache.The application, PlowNYC, was developed using open source and commercial software and custom code. These include OpenLayers, Geoserver, GeoWebCache, GeoTools and Oracle. Since its release, the application has been enhanced to handle greater traffic, support mobile clients and to simplify the interface. The presentation will cover these aspects of the project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
14:08 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A jumpstart for your mobile map app

Would you like to get started programming mobile mapping applications? There's a lot to keep in mind: a responsive layout, a mapping framework, positioning of controls and buttons, offline caching of tiles, and finally compiling it all into a mobile app.This presentation walks you through some problems and solutions, culminating in MobileMapStarter. Techniques discussed include jQuery Mobile, Leaflet, and PhoneGap/Cordova.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
14:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

CS-Map - coordinate system libraries

CS-Map is often used as a reference but has not been as widely adopted as proj4. This presentation describes how CS-Map has been used in a distributed geospatial database for big data.The presentation describes the benefits of CS-Map, in particular its whole earth support and also it disadvantages, primarily it is process locked.The aim of the presentation is to demonstrate that having more than one coordinate system library is a good thing and to encourage development of coordinate system libraries.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Vector tiles for fast custom maps

Vector tiles are becoming a common solution for fast clientside rendering of spatial data in both browsers and mobile devices. With the recent release of TileMill 2 Mapbox has made it easier to design and render vector tiles. This talk will cover the open source technology under the hood in TileMill 2 as well as other available tools. Also discussed will be the status of an emerging specification for vector tiles and recent advances in the format.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:23 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Supporting Open Data with Open Source

Within the US Federal Government, there is a trend towards embracing the benefits of open data to increase transparency and maximize potential innovation and resulting economic benefit from taxpayer investment. Recently, an Executive Order was signed specifically requiring federal agencies to provide a public inventory of their non-restricted data and to use standard web-friendly formats and services for public data access. For geospatial data, popular free and open source software packages are ideal options to implement an open data infrastructure. NOAA, an agency whose mission has long embraced and indeed centered on open data, has recently deployed or tested several FOSS products to meet the open data executive order. Among these are GeoServer, GeoNode, and CKAN, or Comprehensive Knowledge Archive Network, a data management and publishing system.This talk will focus on how these three FOSS products can be deployed together to provide an open data architecture exclusively built on open source. Data sets hosted in GeoServer can be cataloged and visualized in GeoNode, and fed to CKAN for search and discovery as well as translation to open data policy-compliant JSON format. Upcoming enhancements to GeoNode, the middle tier of the stack, will allow integration with data hosting backends other than GeoServer, such as Esri's ArcGIS REST services or external WMS services. We'll highlight NOAA's existing implementation of the above, including the recently-deployed public data catalog, https://data.noaa.gov/, and GeoServer data hosting platform, as well as potential build out of the full stack including the GeoNode integration layer.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Building Open Source Projects in Government Esri Ecosystems

The challenges that are most commonly discussed by proponents of open source in government technology relate to changing the culture among technical staff and explaining the value of open tools and systems. But beyond the political concerns and misperceptions, there are practical complications in implementing these tools inside proprietary tech ecosystems like Esri. Although it's becoming easier, injecting open source into the Esri stack can be convoluted, to say the least.For all of its challenges, however, there have been many successful open source implementations in all levels of government, from open data portals to full-scale applications. Using case studies from recent Code for America projects, this talk will identify some of the more difficult challenges and highlight a few techniques for integrating open source geo tools into the Esri stack with a focus on minimizing difficulty for the developer and maximizing benefit for the end user. The talk will focus on web applications and tools while touching on data interoperability, spatial analysis, and trainings/documentation.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:22 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Adding value to Open Data using Open Source GIS.

New Zealand, like many other countries around the world, is developing Government policies requiring open access to public data. The National Institute for Water and Atmospheric Research (NIWA) has been directed to make subtantial parts of its fisheries, climate, coastal, oceanic and freshwater data more publicly available for re-use. NIWA recognises that making such data available is of very limited value, if potential users do not have access to suitable tools to work with these data, ie: GIS applications. As part of its Open Data programme, NIWA's Fisheries and Environmental Centers have funded enhancements to an Open Source GIS application, QGIS, and made this application available as a free download, along with NIWA data. This approach enables the effective re-use of NIWA (and other agencies') environmental and spatial data by individuals and organisations who otherwise have little or no access to commercial GIS tools. This presentation discusses the value of Open Source (and Open Standards) to support Open Data initiatives, and NIWA's experiences along the way.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:11 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

An Open Source Approach to Communicating Weather Risks

Weather data is a critical element in the decision making process for a vast number of entities and its timely and accurate portrayal is essential. The U.S. National Weather Service has utilized a combination of Open Source projects including: OpenLayers, Qooxdoo, PostGIS and Flot among others to create a mash-up called the Enhanced Data Display or EDD (preview.weather.gov/edd) to promote the development of a Weather Ready Nation. The EDD provides a platform to quickly communicate past, current and future weather conditions. What happens over the next couple of hours to a week dictates the agenda of everything from strategic resource placement to what to wear to work. More often than not, the weather forecast is not binary - there is always some probabilistic component that results from the inherent chaos of a 4-D fluid wrapped around a spinning sphere. Luckily, the EDD makes use of a variety of techniques that leverage Open Source technologies to present forecasts in both deterministic and probabilistic forms. The EDD contains many visual displays that refine bulky meteorological datasets into palatable forms. Whether you are looking to see what hazards you may face along a travel route or trying to find a heat map of how many people will be impacted by a tornado warning, the EDD can display this quickly. Finally, the ability to combine EDD layers with your own data makes this an extremely powerful application. EDD is a good example of how leveraging Open Source resources can result in an exquisite product.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:32 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GIS in Node.js

An overview or GIS tools in server side JavaScript covering turf, proj4js, topojson, mbtiles and integration with Node.js idea like streams.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
out of 4 pages
Loading...
Feedback

Timings

  245 ms - page object
   96 ms - search
  113 ms - highlighting
   47 ms - highlighting/31606
   58 ms - highlighting/31646
   43 ms - highlighting/31676
   51 ms - highlighting/31974
   64 ms - highlighting/31602
   78 ms - highlighting/31621
   56 ms - highlighting/31659
   93 ms - highlighting/31622
   50 ms - highlighting/31714
   92 ms - highlighting/31627
   49 ms - highlighting/31594
   44 ms - highlighting/31725
   67 ms - highlighting/31662
   44 ms - highlighting/31667
   73 ms - highlighting/31688
  112 ms - highlighting/31619
   62 ms - highlighting/31663
   54 ms - highlighting/31607
   98 ms - highlighting/31753
   67 ms - highlighting/31660
   82 ms - highlighting/31664
   52 ms - highlighting/31692
   91 ms - highlighting/31754
   62 ms - highlighting/31666
   44 ms - highlighting/31689
   46 ms - highlighting/31758
   23 ms - highlighting/31639
   42 ms - highlighting/31613
   21 ms - highlighting/31631
   24 ms - highlighting/31628
   38 ms - highlighting/31638
   35 ms - highlighting/31617
   39 ms - highlighting/31634
   35 ms - highlighting/31643
   32 ms - highlighting/31647
   26 ms - highlighting/31612

Version

AV-Portal 3.7.0 (943df4b4639bec127ddc6b93adb0c7d8d995f77c)