Show filters Hide filters

Refine your search

Publication Year
1-36 out of 122 results
Change view
  • Sort by:
31:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A glimpse of FOSS4G in the environmental consulting arena

In the highly competitive world of environmental consulting, being able to manage large volumes of data and deliver timely, accurate information based on that data is critical to our ongoing success. As a relatively small company, we recognized that we needed something unique to survive and prosper in an industry dominated by huge corporations. Over the past 7 years we have made a considerable effort to shift over to a FOSS4G environment, with a belief that, not only would this decision enhance what we already do well, but give us the competitive edge we would need to ensure future prosperity.A brief presentation of a snapshot of our current FOSS4G status, how we arrived here and a workflow tour beginning at the data acquisition stage looking at the feed through our patented EDMS QA/QC system into PostgreSQL followed by a demonstration of a just a few of our many custom web/mobile/desktop applications that rely on the PostgreSQL back end database and how these solutions are able to deliver accurate and timely information to employees and clients alike, and finally, where to next.We take advantage of multiple FOSS4G including the likes of OpenLayers, MapServer, PostgreSQL/PostGIS, PHP, D3 and jQuery. This combination places us in an ideal position to respond to client needs with the ability to rapidly deliver almost any request.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
32:17 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Barriers to FOSS4G Adoption: OSGeo-Live case study

OSGeo-Live is a Linux distribution, available in virtual machine, bootable DVD, or bootable USB formats, containing a curated collection of the latest and best Free and Open Source Geospatial (FOSS4G) applications. This talk investigates the correlations between worldwide download distribution, and community participation against indicators of economic, technical knowledge and socio-cultural barriers to geospatial technology and FOSS adoption. Better understanding the barriers of technology transfer are important to the outreach efforts of the FOSS4G community, and understanding the market development potential of FOSS4G around the world.Results of an analysis of the OSGeo-Live community will be shown but the techniques discussed can be applied to any software project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:02 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Integrating FOSS4G into an enterprise system for Disaster Management

ROGUE (Rapid Open Geospatial User-Driven Enterprise) was a project funded under the Joint Capability Technology Demonstration (JCTD) Program from the U.S. Department of Defense. Boundless and LMN Solutions, LLC implemented the project, with the Pacific Disaster Center (PDC) serving in the role of project Transition Manager. The project's goal was to improve the abilities of the OpenGeo Suite to ingest, update, and distribute non-proprietary feature data in a distributed, collaborative, and occasionally disconnected environment. Under this project, PDC integrated the following technologies into its decision support system for emergency managers named DisasterAWARE:- GeoGit: Versioned replication of spatial data across multiple sites, supports disconnected editing and conflict resolution. - Arbiter: Android app for field data collection, syncs to GeoNode.- MapLoom: GeoNode GUI for spatial data editing and management. - KML Uploader: Functionality to upload KML for storage in PostGIS and served via GeoServer. - GeoServices REST (GSR): Extends GeoServer to publish data using the REST methodology of ArcGIS Server. This presentation will cover the integration of these components into DisasterAWARE, along with the security framework implemented for all components.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:43 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

A FOSS4G-Based Geo Connection System for Education and Research

The presentation will examine the selection, installation, and the current and planned use of a CentOSÐbased system running FOSS4G to support student education, research, and projects with state and local organizations. A system was designed to foster collaborative work between an educational institution and the community. Specifically, it is being used to better understand and enhance distribution systems associated with local agriculture producers and consumers. Part of this work is the development of a web-based system to process and serve geospatial information in an effort to improve communication between food producers and consumers, i.e. restaurants, farmers markets, and Community Supported Agriculture (CSA). This presentation will demonstrate how the system was built to:¥ Continue investigation of the general principles and approaches for designing food distribution systems to enhance local food networks¥ Provide access to a web-based system for geospatial computations and data management¥ Serve as a resource for the community to access information in support of the broader goals of the CEDS research center¥ Act as an map server¥ Act as the server supporting deployment of geo-aware mobile phone applications implemented by the department to enhance the learning process on field trips and other field work¥ Collect, process, store, and serve data from environmental sensors to support education in weather, climate, and the environment
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Introduction to the geospatial goodies in Elasticsearch

In this session we'll introduce how you can work with spatial data in Elasticsearch - The Open Source, distributed, RESTful Search Engine. We'll provide a general introduction on how to index spatial data into Elasticsearch, then cover off on using spatial query and filters, before finishing up showing you how you can visualise and interact with spatial data stored in Elasticsearch using Kibana.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
52:28 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

The Toolmaker’s Guide

Opening Keynote, FOSS4G 2014, Portland, Oregon
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

What's new in Cesium: the open-source alternative for 3D maps

When building 3D mapping apps, we no longer have to deal with closed feature-sets, limited programming models, temporal data challenges and bulky deployments. This talk introduces Cesium, a WebGL-based JavaScript library designed for easy development of lightweight web mapping apps. With live demos, we will show Cesium's major geospatial features including high-resolution global-scale terrain, map layers and vector data; support for open standards such as WMS, TMS and GeoJSON; smooth 3D camera control; and the use of time as a first-class citizen. We will show how Cesium easily deploys to a web browser without a plugin and on Android mobile devices.Since last year's talk at FOSS4G NA, Cesium has added 3D models using the open-standard glTF, a large geometry library and higher-resolution terrain.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:41 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Geodesign: An Introduction to Design with Geography

Geodesign, at its most basic, is design with geography. It is the combination of the tools and techniques geographers and other geoscientists use to understand our world with the methods and workflows designers use to propose solutions and interventions. For instance, the typical master planning process in which GIS-based knowledge is separated from the design process can be turned into a geodesign task by sketching buildings and other land uses directly within a GIS, and seeing indicators update on the fly as various data graphics. This can then allow the designer(s) to pinpoint specific design interventions based on live feedback from geospatial information.Over the last 10 years, technology has facilitated an explosive growth in geodesign as both a framework for solving problems and a toolkit of geospatial analyses that feed into that framework. The growth of the Geodesign Summit in Redlands, CA from 2010 to 2014 is an example of the demand for this sort of framework.Parallel to the rise of geodesign, the tools represented by FOSS4G have also been evolving into sophisticated tools capable of taking on the needs of geodesign. However, to date there's been too little discussion of how to take the framework and working methods of geodesign and accomplish them with open source tools. This session will connect those dots by taking the typical parts of a geodesign framework (suitability analysis, sketching/designing, evaluating/comparing, iterating) and outlining our own experience making use of open source tools for geodesign. In particular, we will focus on how the interoperability of open source tools and the growth of web-based geospatial tools can support (and evolve!) the ways that geodesign is done.This presentation will address:What is geodesign: the conceptual framework and typical use cases for geodesignWhere are we: workflows and tool stacks we've used and seen others use to dateWhere could we go: identifying current gaps and pain points in existing stacks and possible solutions from emerging technologies
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:10 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

From Nottingham to PDX: QGIS 2014 roundup

Following the long awaited QGIS 2 release, announced at FOSS4G 2013 in Nottingham, the project decided to switch to a regular release cycle with three versions per year. QGIS 2.2 was the first release in this cycle and already packed with many new features like 1:n relations, gradient fills, native DXF export and NTv2 datum transformations to name a few. QGIS 2.4, released in June, has one major extension in its core: multithreaded rendering. Originally developed as a Google Summer of Code project, it makes a big difference in the responsiveness of QGIS desktop.This talk shows a selection of the latest features and gives an outlook what's in the works for QGIS 2.6. Some interesting plugins and other news from the community will keep you up to date with the high pace of this OSGeo project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:16 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

pyModis: from satellite to GIS maps

One year after the first public presentation of pyModis at FOSS4G 2013 a lot of improvements have been implemented in the pyModis library. The most important news are that each command line tool now offers a graphical user interface to assist inexperienced users. Furthermore, the MODIS Reprojection Tool (MRT) is not longer mandatory in order to mosaic and reproject the original MODIS data as GDAL is now supported.Hence the most important improvement was the reimplementation of existing MRT component to use the Python binding of GDAL. This was basically driven by the fact that MRT does not properly perform geodetic datum transforms as discovered in the daily work with MODIS data within the PGIS-FEM group leading to shifted reprojection output. With the new GDAL support not only this problem has been solved but also the installation greatly simplified. pyModis is used all over the world in academic, governmental and private companies due to its powerful capabilities while keeping MODIS processing workflows as simple as possible.The presentation will start with a small introduction about pyModis and its components, the library and the tools. This part is followed by news about the latest pyModis release and indications about future developments.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GIS goes 3D : an OpenSource stack

3D in GIS is already here, with more and more data available, and new hardware and sensors for 3D data capture and interaction. The third dimension becomes useful for several use cases and applications, since the technology is now available to achieve full 3D spatial analysis, like 3D intersections, 3D buffers, triangulation and a lot of other data processing capabilities we already use with 2D data. 3D Point clouds from Lidar data, 3D Meshes or TIN, this can now be stored and processed.With 3D data, an absolute must-have is a nice, fast and smooth rendering of features. Visualization is a key element of a complete vertical software stack of 3D data management.This presentation will demonstrate the ability to setup and take advantage of a full FOSS4G 3D stack.Taking data from 3D sensors, or real use-case GIS Open Data, we present the components which can be used together to build the core infrastructure of 3D data management. From data storage to data visualization, through processing and webservices.* Learn how you can use PostgreSQL and PostGIS latest enhancement to store and process 3D data.* Discover how you can setup 3D Web Services for data dissemination* Visualize 3D data with QGIS thanks to the Horao Plugin* Find out the visualization tools available for your favorite browser (Three.js powered)Here we are, a full 3D stack, with OpenSource tools. Software components, data formats, protocols and standards, you will get a global picture of the infrastructure available to extract the value out of your 3D data.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:27 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Js.Geo part Deux recap

For those of you sad pandas who couldn't make JS.geo on Tuesday, we will give a quick intro as to why scheduling was so hard this year, a quick tour of some of the amazing demos, highlights of the discussion from the day, and wrap up with what we would like to do to see it go smoother next year. Be there or be square (actually all that would happen is you would miss out on the coolest tech demo'ed at FOSS4G)!
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:18 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

WPS Benchmarking Session

With the interrest for OGC Web Processing Service growing, we need to know details about the Open Source Solutions available. Various projects implementing WPS designed individuals from their community to participate in this talk to introduce their project and summarize their key features, they are the following: 52¡North WPS, Constellation SDI, GeoServer, PyWPS, ZOO-Project. For being able to provide good quality results, the tests should be run locally, so a server dedicated to this WPS Benchmarking Session, hosting OSGeoLive environments, is accessible to each team for running test procedures defined through discussions. The results of the given test procedures will be presented during this session and will compare implementations from different aspects: capabilities, compliancy, ressources usage and performance.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
52:09 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Don't Copy Data! Instead, Share it at Web-Scale

Since its start in 2006, Amazon Web Services has grown to over 40 different services. S3, our object store, one of our first services, is now home to trillions of objects and regularly peaks at 1.5 million requests/second. S3 is used to store many data types, including map tiles, genome data, video, and database backups. This presentation's primary goal is to illustrate best practice around open data sets on AWS. To do so, it showcases a simple map tiling architecture, built using just a few of those services, CloudFront (CDN), S3 (object Store), and Elastic Beanstalk (Application Management) in combination with FOSS tools, Leaflet, Mapserver/GDAL and Yas3fs. My demo will use USDA's NAIP dataset (48TB), plus other higher resolution data at the city level, and show how you can deliver images derived from over 219,000 GeoTIFFs to both TMS and OGC WMS clients for the 48 States, without pre-caching tiles while keeping your server environment appropriately sized via auto-scaling. Because the NAIP data sits in a requester-pays bucket that allows authenticated read access, anyone with an AWS account has immediate access to the source GeoTIFFs, and can copy the data in bulk to anywhere they desire. However, I will show that the pay-for-use model of the cloud, allows for open-data architectures that are not possible with on-prem environments, and that for certain kinds of data, especially BIG data, rather than move the data, it makes more sense to use it in-situ in an environment that can support demanding SLAs.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:22 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Serving high-resolution sptatiotemporal climate data is hard, let's go shopping

The world is a big place and time is infinite. Scientists who study any aspect of the Earth's climate are immediately faced with the exponentially growing amount of data that are required to represent properties of the climate in both time and space. The bulk of these data is a substantial barrier to extracting meaningful information from their contents. This barrier can be prohibitive to smaller-scale researchers and communities that want to study and understand the impact of the climate on their localities. Fortunately, a substantial amount of free and open source software (FOSS) exists upon which one can build a great geospatial data application.The Pacific Climate Impacts Consortium (PCIC), a regional climate services provider in British Columbia, Canada, has been making a concerted effort to use geospatial FOSS in order to expand the availability, comprehensibility and transparency of big climate data sets from the Coupled Model Intercomparison Project (CMIP5) experiment. With a full stack of geospatial FOSS and open protocols we have built and deployed a web platform capable of visualizing and distributing high-resolution spatiotemporal raster climate data.Our web application consists of:+ back-end storage with raw NetCDF4/HDF5 files+ a PostgreSQL/PostGIS database for indexed metadata+ ncWMS for maps and visualization+ the PyDAP OPeNDAP server for data requests+ a web user interface to tie it all togetherThis presentation will provide a case study for enabling scientific collaboration using FOSS and open standards. We will describe our application architecture, present praise for and critique of the components we used, and provide a detailed discussion of the components that we had to improve or write ourselves. Finally, though our use case is specific to climate model output, we will provide some commentary as to how this use case relates to other applications of spatiotemporal data.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
30:00 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Quadcopter GIS for less than 700 - Hardware and software to map your local community

Quadcopter - Phantom FC40 (500). Camera - Canon PowerShot ELPH 130 IS 16.0 MP (110). Opportunity to engage your local community to produce open data - priceless.Let's get to the point. Let's talk about hardware and software to get out there and actually map some stuff with a quadcopter. This is the story of my adventures hacking with a Phantom quadcopter over the last 10 months to make local maps... and of course have fun. The only rules... it has to be cheap and the software has to be open source.We will go through the hardware, including purchasing, setting up, and flying the quadcopter. The camera is hacked with CHDK and strapped on the quadcopter with some velcro to a vibration dampener cut up with a dremel tool. The processing software is a pain to install, but we will talk through it including software options, how to get your processing off loaded to your video card GPU, and how we as a community can make all this easier in the future. Finally, we will look at what you can actually make... including mosaics, 3d models, and DEM's of your local community.Quadcopters are cheap, fun, and amazing for engaging your local community to produce open data. Let's do it!
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
33:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Spatial in Lucene and Solr

Apache Lucene is a Java toolkit that provides a rich set of search capabilities such as keyword search, query suggesters, relevancy, and faceting. It also includes a spatial module for searching and sorting with geometric data using either a flat-plane model or a spherical model. The capabilities therein are leveraged to varying degrees by Apache Solr and ElasticSearch--the two leading search servers based on Lucene.In this talk I'm going to start by briefly covering some core features of this search platform so that the audience appreciates the unique role it plays in the crowded world of information-retrieval. I will then show examples of using some spatial features in Apache Solr such as:? indexing points, polygons, and other shapes into a Lucene document? filtering search results by a query shape, to include using different search predicates? sorting by distance between indexed points and a query pointNext I will review some spatial features in Lucene spatial and ElasticSearch such as:? sorting bounding boxes by overlap percentage with a query box? aggregating geohash grid counts for heatmapsThe talk will also note the internal architecture and dependencies of Lucene spatial, and discuss a key dependent library called Spatial4j. At the end of the talk I will note some limitations to be aware of, as well as planned improvements. Finally, key advances in geodesic (spherical geometry) information retrieval in Spatial4j will be highlighted.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
41:41 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

How Simplicity Will Save GIS

It's 2014 — we have consumer robots and electric cars, private spacecraft, planet colonization projects, and the Higgs Boson is confirmed, but GIS software is still a mess. You might be able to make sense of it all if you're a GIS specialist with an academic background, but other creative individuals — designers, developers, tinkerers of all kinds, each with a vision and desire to create meaningful and beautiful maps and visualizations — are constantly losing battles against bloat, clutter, and complexity.How do we reverse this GIS entropy? What does it take to turn complex technology into something that anyone can use and contribute to? An attempt to answer by the creator of Leaflet, a simple JS library that changed the world of online maps forever. 
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:26 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

The Manager's Guide to PostGIS

Your staff keep talking about this "PostGIS" thing, but what is it? Does anyone (important) else use it? What for?This talk gives a brief overview of the place of PostGIS in spatial IT architecture, how PostGIS compares to proprietary alternatives, who is using PostGIS, and how organizations transition to open source databases.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:40 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

GeoNetwork opensource 3.0

The presentation will provide an insight of the new functionality available in the latest release of the software. Publishing and managing spatial metadata using GeoNetwork opensource has become main stream in many Spatial Data Infrastructures. GeoNetwork opensource 3.0 comes with a new, clean user interface based on AngularJS, Bootstrap and D3. Other topics presented are related to performance, scalability, usability, workflow, metadata profile plugins and catalogue services compliance. Examples of implementations of the software will also be given, highlighting several national European SDI portals as well as work for Environment Canada and the collaboration with the OpenGeoPortal project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
57:42 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

The Development and Evolution of an open source mapping application within the USG <- Now with More Google Glass

The United States Government has a history of developing applications using legacy systems and continuing to use brittle software. This approach has managed to minimize data collection, sharing and use of open standards. With this in mind NGA has several groups focused on a rapid, innovative, and open approaches to application development. One of the recent applications developed in this fashion is the Mobile Analytic GEOINT Environment (MAGE), which evolved from earlier applications that were used for Disaster Response as well as various special events. Each of these earlier applications had their own strengths and weaknesses that were factored in during the development of MAGE. MAGE is built on an open source stack with a mobile and html5 application designed for geospatial data collection, imagery sharing, tracking, and communication. It is designed to be a lightweight, fully portable software stack that can be placed in front or behind firewalls with ease. It is fully customizable to a wide variety of mission needs so administrators can easily change the data collection parameters. MAGE is fully service enabled allowing easy access to the data via REST requests and returns multiple formats including GeoJSON, KML, and Shapefile to ensure ease of access and sharing. The app has also been ported to Google Glass for field collection and enhanced visualization.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Scaling for NYC while Tracking Plows

In the winter of 2012, NYC's Department of Information Technology and Telecommunications (DoITT) was tasked with developing an application to track snow vehicle operations. The DoITT GIS team was given a mandate to have the application in production before the end of the winter. Due to the aggressive schedule, our approach was to get something up as quickly as possible while enhancing and improving over time. Beyond the schedule constraint, additional challenges were minimal requirements and decision-making by committee with no clear business owner.Three major tasks were required to complete the project: scale the existing infrastructure to better handle the expected demand, determine an approach for communicating the information to the public in a legible and understandable way, and develop and test the application. The team quickly undertook a multi-pronged approach to complete these tasks within a roughly two-month timeframe.Of all the impossible tasks, scaling the infrastructure was the most challenging and difficult. High-profile application launches in NYC that come with press announcements tend to garner traditional and social media coverage and with that national exposure and demand. And although the application would have been a perfect candidate to deploy in the cloud, that was not an option. Additional servers were added and the application was optimized and tuned for performance. To do so, multiple-layers of caching were employed including GeoWebCache and a Content Delivery Network. In terms of visualizing the data, we conducted a quick review of existing public-facing applications. There were not many examples at the time with most cities choosing to show 'breadcrumbs' of a plow's path. We felt this method was not an effective way of conveying plow coverage; our objective being, to show which streets had been plowed and not to show where a plow had been at specific time. As such, we decided on visualizing the data by the time a street was last plowed. Five time-buckets were established and the street segments were color-coded based on the last GPS ping received on the segment. Every 15 minutes an ETL pulls the GPS data and renders tiles using GeoServer and GeoWebCache.The application, PlowNYC, was developed using open source and commercial software and custom code. These include OpenLayers, Geoserver, GeoWebCache, GeoTools and Oracle. Since its release, the application has been enhanced to handle greater traffic, support mobile clients and to simplify the interface. The presentation will cover these aspects of the project.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:18 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Leaflet + UtfGrids + d3.js = liquid fast, massively scalable interactive web map & data visualization

I will discuss and demo how I use Leaflet, UtfGrids, and D3.js in concert to view and interact with large geographic data on the web. This presentation will not be on d3.js, but rather how to get geographic data from a map to a d3.js chart. I will illustrate why this stack is liquid fast and massively scalable and discus in some detail what a UtfGrid is, how it works and how to create and server them to the web. The context of my work:I am currently working on an open source project called OpenQuake. As a part of this project we are developing a platform which serves as a hub for integrated risk assessment. It allows users to combine seismic hazard, risk and social vulnerability in many different ways in order to obtain output for science, risk assessment, risk awareness and risk management.All my work is available on Github and links will be provided to all demonstrated material.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:56 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Getting Started with OpenLayers 3

OpenLayers 3 is here! Now it's time to dive in and get mapping. Join us for an overview of OL3 from a user's perspective. We'll cover common use cases and cool features of the library you might not have heard about. Our goal in this presentation is to get you comfortable with the OpenLayers 3 style of mapping - providing an introduction to raster and vector basics, discussing tips for integration with other JavaScript libraries, and exposing you to the build tools so you can choose just the functionality you need for your mapping application.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
13:42 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Spatial Temporal Network Web Visualization Techniques

Maps are traditional means of presentation and tools for analysis of spatial information. The power of maps can be also put into service in analysis of spatio-temporal data, i.e. data about phenomena that change with time. Exploration of such data requires highly interactive and dynamic maps. Using geospatial open source software, various techniques for visualizing spatial temporal network change data and combinations of spatial temporal network, point and area data are evaluated. Linear referencing represents locations along routes, linear features with an established measurement system, using relative positions. It allows locating events along routes without segmenting it, and has been applied to manage linear features in transportation, utilities, along trail networks and stream networks. Linear referencing for events occurring along a network through time are visualized using both animations and interactive time line visualizations. Sliders are used to give the user manual control to step through the data, allowing them to explore the data presented in each time step. Categorized point events (i.e. traffic accident types, flood locations, etc.) appear at muItiple locations along the network. Color and size of symbols are used to denote these dynamic point event attribute changes and location changes. In addition, line segments are mapped using size and color to identify the changes occurring over time. Some of the combinations of changes evaluated include: attribute change (i.e. traffic accident type), spatial attribute change (i.e. flood boundaries), moving objects (i.e. traffic accidents), rate of change (i.e. fish survival by stream segment) and spatio-temporal aggregation (i.e. multiple fish releases by watershed). Some linear visualization techniques evaluated include: run maps and map and line chart visualization techniques similar to the famous Napoleon's retreat Minard visualization.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:35 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Managing public data on GitHub: Pay no attention to that git behind the curtain

The Atlanta Regional Commission (ARC) continuously solicits feedback on transportation data from local government partners. Historically, this process has taken the form of lots of markings on plotted maps with immeasurable amounts of manual work on the tail end to organize and interpret this feedback. Many tools developed specifically for this process today often fall short of the needs of agencies (such as geospatial presentation and tracking comments), yet the cost to develop or implement custom software is generally out of reach for government agencies.This presentation introduces a case study of the process to develop geospatial collaboration tools for managing transportation data directly hosted on GitHub pages (currently in development at http://atlregional.github.io/plan-it/ and http://atlregional.github.io/fc-review/). This approach was partially inspired by GitHub's recent features additions that make collaborating on geospatial data simple and elegant. Because these data span both functional and jurisdictional divisions, many of the greatest challenges have been project management related --- coordinating stakeholder feedback and project requirements. However, by utilizing the existing git/GitHub infrastructure, many of these requirements can be managed cost effectively. Moreover, the framework allows for direct integration with other application environments via the GitHub API and GDAL Tools, ensuring that local modifications to project data are committed back to the data repository.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
08:50 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Small town GIS - Leveraging GitHub, QGIS and community members to manage local data

Langley is a small rural community on Whidbey Island in Washington State. Like so many other small rural communities, Langley is faced with limited resources but a great need to better understand the geospatial context of the local environment. Through the use of open source tools, including QGIS, GDAL/OGR, PostGIS, GRASS, and others, as well as free open data hosting at GitHub, Langley has started to better leverage existing data and attract community members to participate in gathering new and useful data. Small scale "civic hacking" is alive and well... and provides opportunities and challenges that are both similar and different than that of the larger urban counterparts engaged in large scale civic hacking.This talk with go over the technical aspects of the workflows that have proven fruitful for engaging local community members of small rural communities in both data creation and curation. We will also look at the social aspects of getting local governments engaged in the process of leveraging community resources for open access to data and tools.https://github.com/langleywa
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
20:42 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Repurposing OpenTripPlanner for Ride Sharing

OpenTripPlanner is an open source application for building multi-modal itineraries using OpenStreetMap data about walking and driving routes and General Transit Feed Specification (GTFS) data for public transit data. With some creative adjustments, OpenTripPlanner can also be used to generate itineraries for ride sharing based on a pool of existing rides.This talk will demonstrate taking advantage of OpenTripPlanner's flexibility in this fashion. The example of repurposing OpenTripPlanner will serve as the basis for a more general discussion of ways that functionality relating to geospatial data can be reused in unanticipated ways.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:10 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Developing Tools for Humanitarian Decision Making

The American Red Cross International Services Department (ISD) and project partners are developing a web visualization tool (Mapfolio) to help to visualize Red Cross's disaster response and humanitarian projects around the world. The solution uses innovative Node.js ETL processing to process information from the Red Cross Salesforce Information Management platform. The Mapfolio is open source built on Node.js, Angular, Leaflet, PostGIS, and a custom PGRestAPI (Chubbs). Other technical advances include a custom Leaflet clipped-polygon labeling as well as a map-view-dependent (not zoom level dependent) display of global administrative boundaries. This session will not only walk through the open source components but will also focus on how the Red Cross defined clear deliverables and scaled-up its support of free and open source software.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:41 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Tileserver on a diet using node.js

Imagine you were to present large amounts of constantly changing, live data to the users on a web map. Imagine it was on a website with high traffic volume(83 millon page views per month) and high requirement on quick response time. What software would you use to solve this challenge?This presentation will cover the journey that Hemnet, a leading real estate property portal in Sweden, took while remaking a vital part of the website. A journey, during which a number of existing map servers, such as Geoserver, were put on test, but were not fast and flexible enough. A journey, that ended with creating a custom tileserver with technologies like Mapnik to make it as fast and efficient as possible. During the presentation we will cover the challenges we had and how we faced them with different technologies available. We'll take a look at how we did performance tests and how we rolled everything out to the masses.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:32 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

ILWIS, the next generation tool framework for GIS and remote sensing

The Integrated Land and Water Information System (ILWIS, http://52north.org/communities/ilwis/) is a GIS and remote sensing software integrating raster, vector and thematic data set processing into a desktop application. ILWIS is hosted under the umbrella of the 52North project and managed and maintained by ITC, University of Twente, The Netherlands. ILWIS is currently subject to a significant refactoring and modularization process referred to as ILWIS Next Generation (ILWIS NG). This will increase attractiveness for developers and lowers their entry requirements. It will provide a sustainable code base for the next decade and allows for integration with other open source software. Beneficiaries are researchers, educators and project executers. It will allow them to use GIS and remote sensing functionality in an easy and interoperable manner on a single desktop and in a web and/or mobile environment in order to integrate their work with others in a standardized way. Based on requirements analysis meetings with a small team at ITC, an architecture was created to host the modular components of ILWIS NG. The implementation of this architecture was started in 2013 and comprised the creation of the QT-based core software centered around a plug-in concept which supports connectors. This supports different data formats and interfaces to other software packages. As first extensions, a Python API and WFS have been developed and data connectors to PostgreSQL and OGC's SWE are underway, as well as a flexible mobile app environment, making it possible to configure lightweight GIS apps within a very short time. The presentation will embark upon the justification of starting the software refactoring and will provide an overview of the new modular architecture, giving insight into the design choices which were made. The presentation will also expose the GIS and image processing functionalities within ILWIS and how they are made available in the new interoperable setup indicating the libraries and standards on which they are based. Examples will be given on the many projects in which ITC has used ILWIS already and the potential use of ILWIS Next Generation in combination with OSGEO projects in the future.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:47 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Choose your own Adventure - Open Source Spatial on OpenShift

Learn how to build quick and easy open source mapping solutions using several different languages and datastores. Well start by selecting our source data, and a database to house it. Then, we'll pick language and a simple microframework to power a basic REST API. Finally, we add Leaflet Maps for user-facing data visualization and controls. Feel free to bring a laptop and follow along to launch your very own mapping application during this short talk.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:15 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

MapCache: Overview of MapServer's tile caching server

MapCache is the MapServer project's implementation of a tile caching server. It aims to be simple to install and configure, to be (very) fast (written in C and running as a native module under apache or nginx, or as a standalone fastcgi instance), and to be capable (services WMTS, googlemaps, virtualearth, KML, TMS, WMS). When acting as a WMS server, it will also respond to untiled GetMap requests, by dynamically merging multiple layers into a single image, and multiple tiles into an arbitrary image size. Multiple cache backends are included, allowing tiles to be stored and retrieved from file based databases (sqlite, mbtiles, berkeley-db), memcached instances, cloud REST containers (S3, Azure, Google Cloud Storage), or even directly from tiled TIFF files. Support of dimensions allows storing multiple versions of a tileset (e.g. one per customer), and time based requests can be dynamically served by interpreting and reassembling entries matching the requested time interval. MapCache can also be used to transparently speedup existing WMS instances, by intercepting getmap requests that can be served by tiles, and proxying all other requests to the original WMS server. Along with an overview of MapCache's functionalities, this presentation will also address real-world usecases and recommended configurations.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:39 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Writing better PostGIS queries

This presentation will demonstrate ways to take most advantage of spatial indexes, SQL constructs, and PostGIS specific functions. For these exercises we'll be using PostGIS 2.1+ and PostgreSQL 9.3+ . We'll demonstrate common cases people often do inefficiently.This presentation demonstrates the following1) Various SQL constructs including ANTI join, LEFT, RIGHT, EXISTS, LATERAL, CASE clauses, aggregates2) What common table expressions (CTEs) are and when to and when not to use them3) We'll demonstrate these concepts in use in a couple of common spatial query problems - e.g. proximity analysis (both geometry and geography), raster analysis and generation, aggregation of data based on various attributes, other correlation queries.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:11 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Automated Vehicle Location (AVL)

Using OpenLayers and GeoMoose web clients, MapServer and the PostgreSQL/PostGIS database packages, we've built a live view for our Automated Vehicle Locating (AVL) system, as well as custom geographic reporting tools. This talk will cover why we chose to build our own web viewer instead of using a commercial package, and reasons to use the existing Open Source web viewers. We'll also show how the feed from the commercial AVL vendor was translated into the Postgres database in order to build out a smooth end user experience. There will also be discussion on standards for the database tables and records in order to make the system plug and play for others interested in customizing a live AVL web viewer on their own. Some production services will be demonstrated in a live view mode.
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:38 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2014
Found in:

Cartography from code...?

Nowadays we see, specifically on the Web, maps that are interactive, creative, as well as beautiful and effective. And more and more these maps are no longer "drawn", by hand or computer, but "coded". Programmed. In this talk we show that with modern programming tools, such as the popular D3 API, the results can be as good or better, even to the most discerning cartographer. And we discuss the question "can programmers be cartographers, or should cartographers become programmers...?"
  • Published: 2014
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
out of 4 pages
Loading...
Feedback

Timings

  361 ms - page object
   98 ms - search
  145 ms - highlighting
  112 ms - highlighting/31637
   97 ms - highlighting/31711
  111 ms - highlighting/31736
  138 ms - highlighting/31619
  116 ms - highlighting/31720
   64 ms - highlighting/31590
  104 ms - highlighting/31594
  115 ms - highlighting/31730
  111 ms - highlighting/31659
  116 ms - highlighting/31620
  124 ms - highlighting/31634
  122 ms - highlighting/31645
   52 ms - highlighting/31633
   63 ms - highlighting/31591
  122 ms - highlighting/31974
  119 ms - highlighting/31605
   50 ms - highlighting/31607
  124 ms - highlighting/31740
   29 ms - highlighting/31742
  121 ms - highlighting/31708
   98 ms - highlighting/31660
   80 ms - highlighting/31652
  117 ms - highlighting/31636
   95 ms - highlighting/31690
   34 ms - highlighting/31667
   77 ms - highlighting/31689
   93 ms - highlighting/31664
   60 ms - highlighting/31615
   68 ms - highlighting/31657
   73 ms - highlighting/31758
   22 ms - highlighting/31644
   39 ms - highlighting/31603
   37 ms - highlighting/31666
   24 ms - highlighting/31741
   31 ms - highlighting/31745
   24 ms - highlighting/31703

Version

AV-Portal 3.7.0 (943df4b4639bec127ddc6b93adb0c7d8d995f77c)