Show filters Hide filters

Refine your search

Publication Year
Author & Contributors
1-36 out of 91 results
Change view
  • Sort by:
22:43 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Using Spatial Business Intelligence For Asset Management

The maintenance of waterways is expensive. Optimization of reconstruction projects can save money and limit hindrance for the public. In this presentation I show how the implementation of Spatial OLAP can give better insight in the quality of the construction of waterway banks. By spatially overlaying inspection results with construction records, a better estimation can be made about the overall quality, potential danger and repair costs. Spatial OLAP is an excellent way to provide insight into the different variables involved in the planning proces of maintenance.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
16:22 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Working With Spatial Databases With GeoAlchemy

GeoAlchemy helps you use spatial databases from Python. GeoAlchemy provides extensions to SQLAlchemy, the Python SQL toolkit and ORM. GeoAlchemy builds on SQLAlchemy's extreme flexibility, and can be used for different types of applications, from simple scripts to complex web applications. In this talk we will present GeoAlchemy and SQLAlchemy. We will describe when and how SQLAlchemy and GeoAlchemy can be useful. We will demonstrate the power and flexibility of the tools. We will also present the new version of GeoAlchemy, namely GeoAlchemy 2. GeoAlchemy 2 enables leveraging PostGIS' new features. For example, GeoAlchemy 2 supports PostGIS's new raster type. Finally, we will demonstrate how GeoAlchemy integrates with other well-known Python tools, such as Shapely.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
50:05 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

VivaCity Smart City Platform

Many big vendors are exploring the smart city concept explaining that the smart city is a city aware of the things happening in the infrastructures. Thus the vendors are pushing for a Smart Grid, Smart Metering, Smart Sensors and Smart Whatsoever. This makes the city look like a sick patient, being monitored in many ways with histograms, gauges and panels for the information to be read. In our opinion this is the most unnatural way to interact with city information. Historically the most used way to interact with citizen oriented information is the map. Even today, with the always more precise GIS tools, the map can be an important part of a city information management tool. The VivaCity Project is a platform for the data-driven smart city. The core of the platform consists of a map- based view of the city itself, with all the possible cartographic open data made available by the governance. Beyond that, various apps can contribute in a smart manner through a set of plugins and entry-points for various views of the city, enabling a deep and complex interaction with the city itself. This system is self-sustaining, considering that the city already contains its monitors, which are the citizens. They just need two sets of tools: a visualization tool enabling the citizens to understand what is being done at a given time, and a tool to express opinions, problems and proposals to the governance. Considering that an overly generic tool loses its meaning because it has no real target, the interaction with the governance is delegated to function-specific or target-specific apps sharing a common API. This way both governance and citizen gain benefits, having both sides creating new data all the time and interconnecting information from the city and its inhabitants: governance has the ability make decisions based on real-time citizen-driven data, while citizens have the opportunity to create new services using the provided data. Figure 1 - Part of the VivaCity Smart City Interface For instance, the APIs offered to external apps are aimed to the following areas of interest: Politics, political decisions Maintenance • • • • • • • • • Security City Info, Touristic, Cultural information Management, urbanistic information Urban events, Urban Acupuncture, social analysis Emergency Management, Emergency information aggregation from the many sources available Economic, Managerial information Environmental, Energy usage information The data shown in the interface is the sum and interpretation of the data provided by the local governments through open data, or applications created by third parties like OpenMunicipio in Italy, the OpenSpending platform by OKFN or even simply mash-ups with complex datasources, like the USGS earthquake map, or the various regional APIs for simple services or any other app enabling the citizen to participate actively to the activity of his government. Using the platform in different cities enables a normalization of the services offered by the cities, and the direct comparison and interconnection of cities through a distributed API supporting the governance to empower policies and improve citizens’ lifes.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:39 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

TileServer: Hosting Map Tiles And MBTiles

OpenGIS Web Map Tiling Service (WMTS) is becoming the standard used for distributing raster maps to the web and mobile applications, cell-phones, tablets as well as desktop software. Practically all popular desktop GIS products now support this standard as well, including ESRI ArcGIS for Desktop, open-source Quantum GIS (qgis) and uDig, etc. The TileServer, a new open-source software project, is going to be demonstrated. It is able to serve maps from an ordinary web-hosting and provide an efficient OGC WMTS compliant map tile service for maps pre-rendered with MapTiler, MapTiler Cluster, GDAL2Tiles, TileMill or available in MBTiles format. The presentation will demonstrate compatibility with ArcGIS client and other desktop GIS software, with popular web APIs (such as Google Maps, MapBox, OpenLayers, Leaflet) and with mobile SDKs. We will show a complete workflow from a GeoTIFF file (Ordnance Survey OpenData) with custom spatial reference coordinate system (OSGB / EPSG:27700) to the online service (OGC WMTS) provided from an ordinary web-hosting. The software has been originally developed by Klokan Technologies GmbH (Switzerland) in cooperation with NOAA (The National Oceanic and Atmospheric Administration, USA) and it has been successfully used to expose detailed aerial photos during disaster relief actions, for example on the crisis response for Hurricane Sandy and Hurricane Isaac in 2012. The software was able to handle large demand from an ordinary in-house web server without any issues. The geodata were displayed in a web application for general public and provided to GIS clients for professional use - thanks to compatibility with ArcIMS. It can be easily used for serving base maps, aerial photos or any other raster geodata. It very easy to apply - just copy the project files to a PHP-enabled directory along with your map data containing metadata.json file. The online service can be easily protected with password or burned-in watermarks made during the geodata rendering. Tiles are served directly by Apache web server with mod rewrite rules as static files and therefore are very fast and with correct HTTP caching headers. The web interface and XML metadata are delivered via PHP, because it allows deployment on large number of existing web servers including variety of free web hosting providers. There is no need to install any additional software on the webserver. The mapping data can be easily served in the standardized form from in-house web servers, or from practically any standard web-hosting provider (the cheap unlimited tariffs are applicable too), and from a private cloud. The same principle can be applied on an external content distribution network (Amazon S3 / CloudFront) to serve the geodata with higher speed and reliability by automatically caching it geographically closer to your online visitors, while still paying only a few cents per transferred gigabyte.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Using OSGeo Live In MSc Teaching

Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a semantic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level raster query language. We present the EarthServer project with its vision and approaches, relate it to the current state of standardization, and demonstrate it by way of large-scale data centers and their services using rasdaman.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Disconnected Geospatial Mobile & Open Source 5 Rules To Success?

We present the challenges of building a disconnected geospatial mobile solution and devise five simple rules for the success of your app. This paper will look at the following key issues: Rule 1 Data Storage. Streaming GI data requires good bandwidth, by implementing a caching mechanism the end-user will always have access to the data for a given area. Rule 2 - Use Open Source. Free and Open Source software for GIS has evolved significantly in recent years and in some cases faster than commercial alternatives. The mobile field is a bit different and few experts are using free and open source mobile GIS, despite the good tools that exist. Rule 3 - Use Open Standards. In combination with the use of Open Source products, Open Standards can help future proof the solution. Rule 4 - Simplify User Interfaces. The time of the stylus is gone and users now expect to use their finger for driving the application. Specific attention must be paid to designing simple and clear user interfaces. Rule 5 - Implement Non native Solutions. Should separate solutions be developed for IPhone and Android? Could the answer be instead to actually develop non native solutions reducing development and maintenance costs. Armed with these rules we will look at the challenges on the road ahead to implementing your GI Mobile solution.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:58 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Cartaro - The Geospatial CMS

Cartaro is a new web mapping platform that makes the power of some of the best open source geospatial components available in a content management system (CMS). Cartaro allows to set-up and run small websites or complex web applications with maps and geodata. It is also suitable for geoportals and spatial data infrastructures whenever there is the need to get everything up and running without much individual programming. The geospatial software stack used in Cartaro consists of PostGIS, GeoServer, GeoWebCache and OpenLayers. The whole stack is managed from within the CMS Drupal. The geospatial components bring professional aspects of geodata management into the CMS. This is namely the ability to persist data as true geometries, thus allowing for complex and fast queries and analyses. It does also mean supporting a whole range of data formats and the most relevant OGC standards. For the latter Cartaro can extend the handling of user roles and permissions, which already exists in Drupal, to define fully granular read and write permissions for the web services, too. In the presentation we will first explain our basic motivation behind Cartaro: that is bringing geospatial functionality to the huge community of CMS developers and users. This community, which is of course much larger than the classical FOSS4G community, has a great potential to make more and better use of geodata than it was possible with most existing tools. We will then demonstrate how far the integration with the CMS reaches and present the Drupal user interface that allows to configure most features of Cartaro. We will show how to create, edit and map geospatial content with Cartaro and we will demonstrate the publication of this content as an OGC web service. We will also go into some details concerning the architecture of Cartaro and explain how we tackled specific problems. A glimpse of the some use cases will demonstrate the real potential of Cartaro. It will also show how the focus and functionality of a Cartaro based application can be extended with the installation of any of the Drupal modules that exist for almost every task one could imagine. The presentation will close with the future perspectives for Cartaro. From a technical point of view this includes the roadmap for the next months. But it also includes a discussion of our ideas about Cartaro's role as self-supporting bridge between the geo and not-so-geo world of open source software.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:23 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Leaflet: Past, Present, Future

Leaflet, a JavaScript library for mobile-friendly interactive maps, has come a long way since its inception. The library started as a one-night hack and evolved over the next two years as a closed proprietary API, developed by one person, and then was finally rewritten from scratch as an open source library in 2011. Leaflet is now the most popular open source solution for publishing maps on the Web. What’s the story behind Leaflet? How did it became so successful so quickly despite strong competition and lack of features? This talk will be presented by its lead developer and will cover lessons learned, the current state of the project and future challenges.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:01 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

LIDAR In PostgreSQL With Pointcloud

How do you store massive point cloud data sets in a database for easy access, filtering and analysis? The new PointCloud extension for PostgreSQL allows LIDAR data to be loaded, filtered by spatial and attribute values, and analyzed via integration with PostGIS. We'll discuss the extension implementation, basics of loading data with PDAL, and how to use PointCloud with PostGIS to do on­the­fly LIDAR analysis inside the database.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
16:26 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Gestural Interaction With Spatiotemporal Linked Open Data

Exploring complex spatiotemporal data can be very challenging for non-experts. Recently, gestural interaction has emerged as a promising option, which has been successfully applied to various domains, including simple map control. In this paper, we investigate whether gestures can be used to enable non-experts to explore and understand complex spatiotemporal phenomena. In this case study we made use of large amounts of Linked Open Data about the deforestation of the Brazilian Amazon Rainforest and related ecological, economical and social factors. The results of our study indicate that people of all ages can easily learn gestures and successfully use them to explore the visualized and aggregated spatiotemporal data about the Brazilian Amazon Rainforest.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
49:15 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

FOSS4G13 Keynote QGIS 2.0

  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:30 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

GraphGIS, Bringing Spatial Functionalities To NoSQL Graph Databases

Driven by the major players in of the Web like Google, Facebook, Twitter, NoSQL databases quickly gained real legitimacy in handling important data volumetry. With a first concept of key-value, NoSQL databases have quickly evolve to meet a recurring relationships between entities or documents. Graph / document paradigm provides flexibility that facilitates the representation of the real world. Beyond the representation of information of social networks, this data model fits very well to the problem of Geo Information, its variety of data models and the interconnections between them. The emergence of cloud computing and the needs driven by the Semantic Web have led publishers of geospatial solutions to consider other ways than those currently used to store and process GIS information. It is in this perspective that Geomatys has developed GraphGIS, a spatial cartridge for OrientDB, the Graph oriented NoSQL database. This solution provides support of geographic Vector, Raster and Sensor data, in multiple dimensions and their associated metadata.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:07 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

FOSS4G In Large-scale Projects

The presentation covers experiences and challenges encountered during the implementation of the Kosovo Spatial Data Infrastructure. The SDI consists of GeoPortal, Cadaster and Land Information System and the Address Register, all implemented on the FOSS stack and interconnected via OGC services.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:47 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

GIS Is Not Dead, It's Coming For You And It's Been Drinking JavaScript

This talk will discuss several super kick-ass ways that JavaScript and the web have re-shaped GIS and are changing how we visualize, analyze and share geospatial data with each other and the world. GIS is dead? No, it’s not, and it’s coming to find you and spatially kick your ass with a big bag of JavaScript. The world changes fast (hello, Internet). Yet, our industry (map making in one form or another) is stuck, and has generally shown itself to be slow to react to new ideas and paradigms that grow rapidly in other spaces. But there is still hope! GIS is coming back, and it’s being re-tooled with lots of shiny new software and geo-weapons. It’s going to make an assault on all of our previous notions of its old self. Of course this new and shiny GIS resembles its former self in many ways, it's also full many new ideas about how we experience maps and data on the web. As we witness a massive resurgence in JavaScript (hello D3 & node.js), and more emphasis placed on the web in general, we see that there are actually still large holes that should be filled the geo-spatial stack. New waves of JavaScript developers have, and will continue to fill these gaps. This talk will discuss several super kick-ass ways that JavaScript and the web have re-shaped GIS and are changing how we visualize, analyze and share geospatial data with each other and the world.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Machine Learning For Remote Sensing : Orfeo ToolBox Meets OpenCV

Orfeo ToolBox is an open-source library developed by CNES in the frame of the Orfeo program since 2006, which aimed at preparing institutional and scientific users to the use of the Very High Resolution optical imagery delivered by the Pleiades satellites. It is written in C++ on top of ITK, a medical imagery toolkit, and relies on many other open-source libraries such as GDAL or OSSIM. The OTB aims at providing generic means of pre-processing and information extraction from optical satellites imagery. In this talk, we will focus on recent advances in the machine learning functionality allowing to use the full extent of OpenCV algorithms. Historically, supervised classification of satellite images with OTB mainly relies on libSVM. The Orfeo ToolBox provides tools to train the SVM algorithm from images and raster or vector training areas, to use a trained SVM algorithm to classify satellite images of arbitrary size in a multithreaded way, and to estimate the accuracy of the classification. The SVM algorithm has also been used for other applications such as change detection or object detection. But even if it is one of the most used function of the OTB, the supervised classification function did not offer a single alternative to the SVM algorithm. However, the open-source world offers plenty of implementations of state-of-the-art machine learning algorithms. For instance OpenCV, a computer vision C++ library distributed under the BSD licence, includes a statistical machine learning module that contains no less than height different algorithms (including SVM). We therefore created an API to represent a generic machine learning algorithm. This API can then be specialized to encapsulate a given algorithm implementation. The machine learning algorithm API assumes very few properties for such algorithms. A method has to be specialized to train the algorithm from a samples vector and a set of target labels or values, and another to predict labels or values from a samples vector. Thanks to templating, these methods handle both classification and regression. Two other methods are in charge of saving and loading back the parameters from training. File format for saving is left to the underlying implementation, and the load method is expected to return a success flag. This success flag is used in a factory pattern, designed to be able to seamlessly instantiate the appropriate machine learning algorithm specialization upon file reading. It is therefore not necessary to know which algorithms the trained parameters files refer to. This new set of classes has been embedded into a new OTB application. Its purpose is to train one of the machine learning algorithm from a set of images and GIS file describing training areas, and output the trained parameters file. Another application is in charge of reading back this file and applying the classification algorithm to a given image. With these two tools, it is very easy to train different algorithms against the same dataset, evaluate them with the help of another application which can compute confusion matrix and classification performances measurement so as to choose one or several best algorithm along with their parameters. The resulting classification maps could then be combined into a more robust one using yet another OTB application, using classes majority voting or Dempster-Shafer combination. Our perspectives for using and improving this new API are manyfold. First, we would like to investigate further the use of the regression mode. We also would like to investigate the performances of the new machine learning algorithms for other tasks achievable with OTB, such as object detection for instance. Last, we would like to evolve the API so as to export any confidence or quality indices an algorithm can output regarding its predictions. This would open the way to the implementation of new active learning tools.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:35 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

MapServer Project Status Report - Meet The Developers!

This session starts with a status report of the MapServer project, followed by an open question/answer session to provide a opportunity for users to interact with members of the MapServer project team. We will go over the main features and enhancements introduced in MapServer 6.2 and 6.4, including the addition of the new TinyOWS and MapCache components, the current and future direction of the project, and finally discuss contribution opportunities for interested developers and users. Don’t miss this chance to meet and chat face-to-face with the members of the MapServer project team!
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:35 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

MapCache: The Fast Tiling Server From The MapServer Project

MapCache is a new member in the family of tile caching servers. It aims to be simple to install and configure (no need for the intermediate glue such as mod-python, mod-wsgi or fastcgi), to be (very) fast (written in C and running as a native module under apache or nginx, or as a standalone fastcgi instance ), and to be capable (services WMTS, googlemaps, virtualearth, KML, TMS, WMS). When acting as a WMS server, it will also respond to untiled requests, by merging its cached tiles vertically (multiple layers) and/or horizontally. Multiple cache backends are included, allowing tiles to be stored and retrieved from file based databases (sqlite, mbtiles, berkeley-db), memcached instances, or even directly from tiled TIFF files. Support of dimensions allows storing multiple versions of a tileset, and time based requests can be dynamically served by interpreting and reassembling entries matching the requested time interval. MapCache can also be used to transparently speedup existing WMS instances, by intercepting getmap requests that can be served by tiles, and proxying all other requests to the original WMS server. Along with an overview of MapCache's functionalities, this presentation will also address real-world usecases and recommended configurations.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:44 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Mapbender3 - Create Your Own Geoportal Web Application And Service Repository

Mapbender3 is a client framework for spatial data infrastructures. It provides web based interfaces for displaying, navigating and interacting with OGC compliant services. Mapbender3 has a modern and user-friendly administration web interface to do all the work without writing a single line of code. Mapbender3 helps you to set up a repository for your OWS Services and to create indivdual application for different user needs. The software is is based on the PHP framework Symfony2 and integrates OpenLayers, MapQuery and JQuery. The Mapbender3 framework provides authentication and authorization services, OWS Proxy functionality, management interfaces for user, group and service administration. In the presentation we will have a look at some Mapbender3 solutions and find out how powerful Mapbender3 is! You will see how easy it is to publish your own application.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:01 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Past, Present, & Future of MapProxy

More than three years ago MapProxy started as a small tile cache with the ability to serve regular WMS clients. MapProxy grew from that to a powerful and flexible proxy for maps. Features like the security API, the ability to reproject tiles, support for coverages from Shapefiles or PostGIS and the various tools are just a few things that make MapProxy to stand out. MapProxy is used in countless projects -- by federal or state agencies and institutions, by universities, students and hobbyists, by small, national and international companies -- all around the world. It is used to combine multiple WMS services to one, make WMS servers available in tiled clients or to restict access to georaphic boundaries. This presentation will show you the most important features that were added to MapProxy in the last years. All features will be explained with practical use cases. Topics: - Cascading WMS: combine multiple heterogeneous WMS services to one, with coverages and unified FeatureInfo - Tiling: create Google Maps/OpenStreetMap compatible tile services from WMS services that do not support the web mercator projection - Tiling: reproject tiles from web mercator to a local projection - Security: give users access to single layers, restricted to user-dependent polygons - Render server: directly integrate MapServer or Mapnik into MapProxy - Tools: calculate scales, estimate the number of tiles, read capabilities, re-seed areas, ... This presentation will also be about the future of MapProxy and the road to version 2.0.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:04 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

A New Dimension To PostGIS : 3D

Talking about 3D used to sound cool. Used to. But for real GIS use, we really need more than just playing with a globe. 3D in GIS becomes cool as soon as we have the ability to deal with full 3D spatial analysis. Just as we already have in 2D, we need functions like intersection, buffer, triangulation and more ... The GEOS library provides us 2D topological processing for years. The CGAL library could now also provide us some interesting additional 3D topological functions. As CGAL is not fully designed for GIS data models, we provide a library inbetween called SFCGAL, in charge of providing a Simple Feature API on top of CGAL. PostGIS 2.1 now allows to link PostGIS and (SF)CGAL, and already provides several exciting 3D functions (and more and more to come). This thrilling talk about PostGIS 3D will therefore focus on : - What kind of project / application needs 3D GIS analysis ? - What can we do right now with PostGIS 2.1 and (SF)CGAL ? - What we will be able to do soon with PostGIS 3D ? - Some tools used to view and manipulate 3D data (QGIS / WebGL based)
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:23 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

A New Zealand Case Study: Open Source, Open Standards, Open Data

  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:20 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Epidemiology With An Open Source WebGIS Platform

We present a statistical WebGIS platform integrating visualization tools and statistical functions for epidemiological studies, entirely based on Open Source technologies. An application for cancer mapping and environmental cancer studies is the Cancer Atlas (CA-TN), the GeoICT platform of the Cancer Registry of Trentino (Italy).
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:42 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

A Cellular Automata Land-Use Model For The R Software Environment

A cellular automata model of land-use change developed in the free and open source software environment R is presented. The advantages offered by R as a development environment for a CA land-use model are evaluated, and the pros and cons of the approach employed are discussed in depth with reference to commercial alternatives.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:23 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

An Open Source Analysis Toolbox For Street Network Comparison

This paper presents a novel open source toolbox for street network comparison based on the Sextante geoprocessing framework for the open source Geographic Information System Quantum GIS (QGIS). In the spirit of open science, the tool- box enables researchers worldwide to assess the quality of street networks such as OpenStreetMap (OSM) by calculating key performance indicators commonly used in street network comparison studies. Additionally, we suggest two new perfor- mance indicators for turn restriction and one-way street comparisons specifically aimed at testing street network quality for routing. We demonstrate the use of this toolbox by comparing OSM and the official Austrian reference graph “Graph Integration Platform” (GIP) in the greater Vienna region.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:32 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Getting The Best Performance For GeoJSON Map Visualizations: PostGIS Vs CouchDB Backend

In order to deliver rich user experience to user, features (attribute data and geometries) have to be sent to the client for mouse-over visual effects, synchronization between charts, tables and maps, and on-the-fly classifications. GeoJSON is one of the most popular encodings for the transfer of features for client-side map visualization. The performance of client visualizations depends on a number of factors: message size, client memory allocation, bandwidth, and the speed of the database back-end amongst the main ones. Large GeoJSON-encoded datasets can substantially slow down loading and stylization times, and also crash the browser when too many geometries are requested. A combination of techniques can be used to reduce the size of the data (polygon generalization, compression, etc). The choice of an open-source DBMS for geo-spatial applications used to be easy: PostGIS is powerful, well-supported, robust and fast RDBMS ? On the other hand, unstructured data, such as (Geo)JSON, may be better served by document-oriented DBMS such as Apache CouchDB. The performance of PostGIS and CouchDB in producing GeoJSON polygons with different combination of factors that are known to affect performance was tested: compression of GeoJSON (zip) to reduce transmission times, different levels of geometry generalization (reducing the number of vertices in transferred geometries), precision reduction (the reduction of numbers of decimal digits encoding coordinates), and the use of a topological JSON encoding of geometries (TopoJSON) to avoid redundancy of edges transferred. We present the results of a benchmark exercise testing the performance of an OpenLayers interface backed by a persistence layer implemented using PostGIS and CouchD. Test data were collected using an automated test application based on Selenium, which allowed to gather repeated observations for every combination of factors and build statistical models of performance. These statistical models help to pick the best combination of techniques and DBMS, and to gauge the relative contribution of every technique to the overall performance.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:34 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

GDAL/OGR Project Status

An overview of the capabilities of the GDAL/OGR (Geospatial Data Abstraction Library) project will be covered, followed by a focus on new developments in the last two years and future directions for the project.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:25 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

ESA User Services Powered By Open Source

  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:39 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

OpenLayers 3: Under The Hood

OpenLayers 3 is the next generation of web mapping. A radical new architecture and the use of cutting edge JavaScript techniques, libraries, and tools enables a full suite of previously unimaginable functionality while maintaining a compact, high performance library. In this talk we'll show you how to use this functionality in your applications, and peek under the hood to see how OpenLayers 3's architecture makes it possible. We'll include: Virtual globe (Cesium) integration: a carefully designed camera and data source abstractions permit close integration with the virtual globes. Switch between 2D and 3D views of the same data, or display synchronized 2D and 3D views side by side. Multiple rendering back-ends: a pluggable rendering architecture supports multiple renderers for maximum performance and portability. A Canvas 2D renderer provides fast, reliable rendering on current devices, a DOM renderer provides fall-back capabilities for older browsers, and a WebGL renderer opens the door to the next generation of performance for the most demanding applications. Rich data sources: generic and powerful core data representations of tiled, single image, and vector data make it easy to add support for a wide range of geospatial data sources. Smooth and flexible interaction and animation: an optimized rendering path ensures that interaction remains smooth at all times. Compact library size: use of the Closure suite of tools creates keeps the build size small while keeping the source code readable.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

PyModis: The Python Library For MODIS Data

pyModis library is a Python library to work with MODIS sensor satellite data. It was originally developed as an interface to download MODIS data from the NASA FTP server but it has grown into a powerful library which also offers further operations on the data. pyModis has several features: - it supports downloading of large numbers of original MODIS HDF/XML files. This is ideal for the automated continuous updating of a local archive through a cron job; - it can parse the XML file to obtain metadata information about the related HDF files; - it can convert a HDF MODIS file to GEOTIFF format; - it can create a mosaic of several MODIS tiles to obtain large coverages including the creation of the merged XML metadata file with information of all tiles used in this mosaic. For format conversion and mosaicing the MODIS Reprojection Tool (MRT) is required, because at time MRT is the best free and open source software to manage original MODIS data and convert them into a different projection system or format while taking care of the special features of the original Sinusoidal projection. pyModis is composed of three modules: - downmodis.py contains a class downModis used to download MODIS data, it requires a “password” for the FTP transfer (usually your email address) and a path where to store the downloaded data. Other parameters are optional, such as the date range or the MODIS product to be downloaded; - parsemodis.py contains two classes, parseModis that parses metadata of a HDF file returning all useful information. It has also the capability to create a configuration file for MRT; the other class is parseModisMulti, it reads metadata of several HDF files, hence it is used to create the XML file for a mosaic. This class is also able to return the bounding box of all the tiles; - convertmodis.py is the module to do some simple operations on the original HDF files such as reprojection. It contains three classes and all of them require the MRT software to be installed. convertModis converts HDF files to GeoTIFF format; createMosaic creates a mosaic from several MODIS HDF files into a single HDF file; and processMosaic converts the raw data of MODIS using swath2grid from MRT-Swath. In pyModis the user can also find five command line tools to easily work with pyModis library: - modis download.py is the tool to download data, - modis parse.py reads metadata of a HDF file, prints information or writes them to a file, - modis multiparse.py reads metadata of several HDF files and prints bounding box or writes the MODIS XML metadata for a mosaic, - modis mosaic.py creates a HDF mosaic from several HDF files, - modis convert.py converts MODIS data to GeoTIFF or other formats and as well as different projection reference systems. During the presentation all these topics will be discussed and illustrated along with more information about the future of pyModis and the tools for the community (how to contribute or how to report a bug or an enhancement).
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
30:25 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Raster Data In GeoServer And GeoTools: Achievements, Issues And Future Developments

The purpose of this presentation is, on a side, to dissect the developments performed during last year as far as raster data support in GeoTools and GeoServer is concerned, while on the other side to introduce and discuss the future development directions. Advancements and improvements for the management of raster mosaic and pyramids will be introduced and analyzed, as well as the latest developments for the exploitation of GDAL raster sources. Extensive details will be provided on the latest updates for the management of multidimensional raster data used in the Remote Sensing and MetOc fields. The presentation will also introduce and provide updates on the JAITools and ImageIO-Ext projects. JAITools provides a number of new raster data analysis operators, including powerful and fast raster algebra support. ImageIO-Ext bridges the gap across the Java world and native raster data access libraries providing high performance access to GDAL, Kakadu and other libraries. The presentation will wrap up providing an overview of unresolved issues and challenges that still need to be addressed, suggesting tips and workarounds allowing to leverage the full potential of the systems.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:57 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

The Geodata Agency's Data Distribution Platform

Digital distribution of geodata makes it possible to improve the efficiency and accuracy of our professional users' data collections on an ongoing basis. The Agency's Digital Map Supply is a national infrastructure to distribute geospatial data to all kind of users. Subscribers to the Digital Map Supply receive their geodata via web services, eliminating shipping time and resources. All services are based on OGC standards e.g. WFS, WMTS, WMS and WCS. Furthermore the Digital Map Supply exposes a range of REST and SOAP services for geocoding, address searches etc. As part of the common public-sector eGOVERNMENT strategy 2011-2015, the government and Local Government Denmark have agreed on a basic data programme. The programme contains a number of specific improvements and initiatives in public-sector basic data, which will underpin greater efficiency and growth. The Digital Map Supply is the infrastructure that is used to supply the geospatial data to public agencies, end users, private companies etc. Furthermore the Digital Map Supply also supports a number of INSPIRE compliant services that The Geodata Agency is responsible of - such as a cadastral WFS. The presentation will show the architecture behind the Digital Map Supply including the number of open source components such as PostGIS, MapServer, GeoWebCache and GeoServer. The Digital Map Supply has been in service for more than ten years and the architecture has evolved during that time moving from commercial software to open source software. Moreover the presentation will outline the future of the Digital Map Supply including the migration to a new, common National distribution platform for all common public-sector data.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:38 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

The Importance Of Open Source Geospatial Labs In Widening Geospatial Education Worldwide

The importance of Open Source Geospatial Labs in widening Geospatial education worldwide Suchith Anand, University of Nottingham, UK Charlie Schweik, University of Massachusetts, Amherst, USA Helena Mitasova, North Carolina State University Maria Antonia Brovelli, Politecnico di Milano, Italy Serena Cotezee, University of Pretoria, South Africa Phil Davis, GeoTech Center, Delmar College, USA Patrick Hogan, NASA, USA Raphael Moreno, University of Colorado, Denver, USA Jeremy Morley, University of Nottingham, UK Although there has been tremendous growth in geospatial science over the last decade, the number of universities offering teaching in geospatial science in developing countries is very low. There are number of factors for this including high cost of software, lack of trained staff etc. But with the advent and maturity of free and open source geospatial software many universities in developing countries across the world will be establishing courses in geospatial science in the next few years. It was with this bigger mission in mind that in Sep 2011, the Open Source Geospatial Foundation (OSGeo) and the International Cartographic Association (ICA) signed an MoU with the aim of developing on a global basis collaboration opportunities for academia, industry and government organizations in open source GIS software and data. Within a span of one year, we now have established labs across the planet in 6 continents . We have now grown to 20 research labs across the world (6 in Europe, 3 in North America, 3 in South America, 4 in Asia, 3 in Africa and 1 in Australia). The three main aims of the ICA-OSGeo Lab Network are to provide expertise and support for the establishment of Open Source Geospatial Laboratories and Research Centers across the world for supporting development of open-source geospatial software technologies, training and expertise ; to provide support for building-up and supporting development of open source GIS training materials; to enable development of collaboration opportunities for academia, industry and government organizations in open source GIS for the purpose of creating a sustainable ecosystem for open source GIS globally. The availability of free and open source GIS will make possible for large number of universities especially in developing countries to also start courses in geospatial science. This will in true sense bring down the entry barrier for many students especially in developing countries to learn GIS. The OSGeo.org’s education and curriculum committee has a significant history of collaboration and established significant social capital among the network of participants. but up until now, we have only been able to achieve collaboration in the form of individual posts of metadata and links to educational material [2]. With the emergence of this lab network model, coupled with the right incentives, we are confident that this network can do more collectively on the education front, and we have not yet formed closer collaborative ties in the area of open geospatial application and research. Recently the authors listed above have been collaborating on a grant proposal to establish a new effort for this open geospatial lab network that mimics open source software collaboration and that includes three key components: (1) a coordinated teaching program; (2) a repository and a system for the management of new derivatives; and (3) a organized cross-node research program focusing on applications of open geospatial technologies to support local governance and management in several key environmental management areas. In this presentation, we will describe elements of this proposal, partly in an effort to encourage others at FOSS4G to consider joining in the effort, and to solicit other collaborative ideas from the audience.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Taming Rich GML With stETL, A Lightweight Python Framework For Geospatial ETL

Data conversion combined with model and coordinate transformation from a source to a target datastore (files, databases) is a recurring task in almost every geospatial project. This proces is often refered to as ETL (Extract Transform Load). Source and/or target geo-data formats are increasingly encoded as GML (Geography Markup Language), either as flat records, so called Simple Features, but more and more using domain-specific, object oriented OGC/ISO GML Application Schema's. GML Application Schema's are for example heavily used within the INSPIRE Data Harmonization effort in Europe. Many National Mapping and Cadastral Agencies (NMCAs) use GML-encoded datasets as their bulk format for download and exchange and via Web Feature Services (WFSs).
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:06 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

The Met Office Open Data Journey

In November 2011, the UK Met Office launched DataPoint: an Application Programming Interface (API) for the release of its Open Data, in support of the Government’s desire for increased transparency and economic growth. Starting with just a handful of users, the service has grown in data, functionality and usage. This year the we are making further developments, responding to user feedback and ensuring INSPIRE compliance. This presentation will describe the journey so far and a forecast for the future.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

The RAGLD (Rapid Assembly Of Geo-centred Linked Data) Framework

As more linked data and open data emerges a need was identified to meet a rising demand for a suite of application developers’ tools to make it easier to bring together, use and exploit these diverse data sets. RAGLD aims to create a set of tools, components and services to make it easier to develop linked Data applications. This talk will describe the RAGLD framework and examples will be given on how it can be used.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:24 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

The Right Approach: How Toscana Is Migrating To GFOSS

The Tuscany Regional Administration had a rather usual proprietary GIS infrastructure (ArcIMS, Oracle, ArcGIS). They started migrating to Open Source GIS with an integrated approach, both on the sever side (PostGIS, MapServer, Geonetworks) and on the client side (Quantum GIS, GRASS), providing also training to hundreds of their technicians. What makes this experience particularly interesting is the fact that they worked form the onset in very close contact with the community, requiring that the code developed for them was generalized, and pushed to main source code. This seemed more cumbersome at first, having to coordinate with several other developers, and not having functions closely fit to their specific needs, but the superiority of this approach become quickly evident, as several functions were further improved and maintained by third parties. Among the most notable achievements were much improved topology support in PostGIS, SLD support in QGIS, and much more. We advise other administrations and enterprises to avoid the temptation of working in isolation, and simply using FOSS4G, maybe tailoring it locally, without contributing back, as this approach is short-lived, and less successful in the long term.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
out of 3 pages
Loading...
Feedback

Timings

  146 ms - page object
  120 ms - search
    4 ms - highlighting
    2 ms - highlighting/15510
    2 ms - highlighting/15533
    2 ms - highlighting/15524
    2 ms - highlighting/15548
    3 ms - highlighting/15592
    2 ms - highlighting/15549
    2 ms - highlighting/15517
    1 ms - highlighting/15596
    2 ms - highlighting/15587
    2 ms - highlighting/15590
    1 ms - highlighting/15591
    1 ms - highlighting/15531
    3 ms - highlighting/15532
    2 ms - highlighting/15505
    2 ms - highlighting/15578
    1 ms - highlighting/15503
    2 ms - highlighting/15574
    2 ms - highlighting/15551
    2 ms - highlighting/15526
    1 ms - highlighting/15538
    1 ms - highlighting/15555
    1 ms - highlighting/15584
    2 ms - highlighting/15557
    1 ms - highlighting/15553
    1 ms - highlighting/15554
    3 ms - highlighting/15582
    1 ms - highlighting/15501
    2 ms - highlighting/15534
    1 ms - highlighting/15573
    2 ms - highlighting/15569
    2 ms - highlighting/15539
    2 ms - highlighting/15541
    2 ms - highlighting/15585
    2 ms - highlighting/15581
    2 ms - highlighting/15527
    2 ms - highlighting/15583

Version

AV-Portal 3.7.0 (943df4b4639bec127ddc6b93adb0c7d8d995f77c)