Show filters Hide filters

Refine your search

Publication Year
Author & Contributors
1-36 out of 54 results
Change view
  • Sort by:
50:05 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

VivaCity Smart City Platform

Many big vendors are exploring the smart city concept explaining that the smart city is a city aware of the things happening in the infrastructures. Thus the vendors are pushing for a Smart Grid, Smart Metering, Smart Sensors and Smart Whatsoever. This makes the city look like a sick patient, being monitored in many ways with histograms, gauges and panels for the information to be read. In our opinion this is the most unnatural way to interact with city information. Historically the most used way to interact with citizen oriented information is the map. Even today, with the always more precise GIS tools, the map can be an important part of a city information management tool. The VivaCity Project is a platform for the data-driven smart city. The core of the platform consists of a map- based view of the city itself, with all the possible cartographic open data made available by the governance. Beyond that, various apps can contribute in a smart manner through a set of plugins and entry-points for various views of the city, enabling a deep and complex interaction with the city itself. This system is self-sustaining, considering that the city already contains its monitors, which are the citizens. They just need two sets of tools: a visualization tool enabling the citizens to understand what is being done at a given time, and a tool to express opinions, problems and proposals to the governance. Considering that an overly generic tool loses its meaning because it has no real target, the interaction with the governance is delegated to function-specific or target-specific apps sharing a common API. This way both governance and citizen gain benefits, having both sides creating new data all the time and interconnecting information from the city and its inhabitants: governance has the ability make decisions based on real-time citizen-driven data, while citizens have the opportunity to create new services using the provided data. Figure 1 - Part of the VivaCity Smart City Interface For instance, the APIs offered to external apps are aimed to the following areas of interest: Politics, political decisions Maintenance • • • • • • • • • Security City Info, Touristic, Cultural information Management, urbanistic information Urban events, Urban Acupuncture, social analysis Emergency Management, Emergency information aggregation from the many sources available Economic, Managerial information Environmental, Energy usage information The data shown in the interface is the sum and interpretation of the data provided by the local governments through open data, or applications created by third parties like OpenMunicipio in Italy, the OpenSpending platform by OKFN or even simply mash-ups with complex datasources, like the USGS earthquake map, or the various regional APIs for simple services or any other app enabling the citizen to participate actively to the activity of his government. Using the platform in different cities enables a normalization of the services offered by the cities, and the direct comparison and interconnection of cities through a distributed API supporting the governance to empower policies and improve citizens’ lifes.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:39 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

TileServer: Hosting Map Tiles And MBTiles

OpenGIS Web Map Tiling Service (WMTS) is becoming the standard used for distributing raster maps to the web and mobile applications, cell-phones, tablets as well as desktop software. Practically all popular desktop GIS products now support this standard as well, including ESRI ArcGIS for Desktop, open-source Quantum GIS (qgis) and uDig, etc. The TileServer, a new open-source software project, is going to be demonstrated. It is able to serve maps from an ordinary web-hosting and provide an efficient OGC WMTS compliant map tile service for maps pre-rendered with MapTiler, MapTiler Cluster, GDAL2Tiles, TileMill or available in MBTiles format. The presentation will demonstrate compatibility with ArcGIS client and other desktop GIS software, with popular web APIs (such as Google Maps, MapBox, OpenLayers, Leaflet) and with mobile SDKs. We will show a complete workflow from a GeoTIFF file (Ordnance Survey OpenData) with custom spatial reference coordinate system (OSGB / EPSG:27700) to the online service (OGC WMTS) provided from an ordinary web-hosting. The software has been originally developed by Klokan Technologies GmbH (Switzerland) in cooperation with NOAA (The National Oceanic and Atmospheric Administration, USA) and it has been successfully used to expose detailed aerial photos during disaster relief actions, for example on the crisis response for Hurricane Sandy and Hurricane Isaac in 2012. The software was able to handle large demand from an ordinary in-house web server without any issues. The geodata were displayed in a web application for general public and provided to GIS clients for professional use - thanks to compatibility with ArcIMS. It can be easily used for serving base maps, aerial photos or any other raster geodata. It very easy to apply - just copy the project files to a PHP-enabled directory along with your map data containing metadata.json file. The online service can be easily protected with password or burned-in watermarks made during the geodata rendering. Tiles are served directly by Apache web server with mod rewrite rules as static files and therefore are very fast and with correct HTTP caching headers. The web interface and XML metadata are delivered via PHP, because it allows deployment on large number of existing web servers including variety of free web hosting providers. There is no need to install any additional software on the webserver. The mapping data can be easily served in the standardized form from in-house web servers, or from practically any standard web-hosting provider (the cheap unlimited tariffs are applicable too), and from a private cloud. The same principle can be applied on an external content distribution network (Amazon S3 / CloudFront) to serve the geodata with higher speed and reliability by automatically caching it geographically closer to your online visitors, while still paying only a few cents per transferred gigabyte.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Using OSGeo Live In MSc Teaching

Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a semantic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level raster query language. We present the EarthServer project with its vision and approaches, relate it to the current state of standardization, and demonstrate it by way of large-scale data centers and their services using rasdaman.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:37 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Disconnected Geospatial Mobile & Open Source 5 Rules To Success?

We present the challenges of building a disconnected geospatial mobile solution and devise five simple rules for the success of your app. This paper will look at the following key issues: Rule 1 Data Storage. Streaming GI data requires good bandwidth, by implementing a caching mechanism the end-user will always have access to the data for a given area. Rule 2 - Use Open Source. Free and Open Source software for GIS has evolved significantly in recent years and in some cases faster than commercial alternatives. The mobile field is a bit different and few experts are using free and open source mobile GIS, despite the good tools that exist. Rule 3 - Use Open Standards. In combination with the use of Open Source products, Open Standards can help future proof the solution. Rule 4 - Simplify User Interfaces. The time of the stylus is gone and users now expect to use their finger for driving the application. Specific attention must be paid to designing simple and clear user interfaces. Rule 5 - Implement Non native Solutions. Should separate solutions be developed for IPhone and Android? Could the answer be instead to actually develop non native solutions reducing development and maintenance costs. Armed with these rules we will look at the challenges on the road ahead to implementing your GI Mobile solution.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:58 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Cartaro - The Geospatial CMS

Cartaro is a new web mapping platform that makes the power of some of the best open source geospatial components available in a content management system (CMS). Cartaro allows to set-up and run small websites or complex web applications with maps and geodata. It is also suitable for geoportals and spatial data infrastructures whenever there is the need to get everything up and running without much individual programming. The geospatial software stack used in Cartaro consists of PostGIS, GeoServer, GeoWebCache and OpenLayers. The whole stack is managed from within the CMS Drupal. The geospatial components bring professional aspects of geodata management into the CMS. This is namely the ability to persist data as true geometries, thus allowing for complex and fast queries and analyses. It does also mean supporting a whole range of data formats and the most relevant OGC standards. For the latter Cartaro can extend the handling of user roles and permissions, which already exists in Drupal, to define fully granular read and write permissions for the web services, too. In the presentation we will first explain our basic motivation behind Cartaro: that is bringing geospatial functionality to the huge community of CMS developers and users. This community, which is of course much larger than the classical FOSS4G community, has a great potential to make more and better use of geodata than it was possible with most existing tools. We will then demonstrate how far the integration with the CMS reaches and present the Drupal user interface that allows to configure most features of Cartaro. We will show how to create, edit and map geospatial content with Cartaro and we will demonstrate the publication of this content as an OGC web service. We will also go into some details concerning the architecture of Cartaro and explain how we tackled specific problems. A glimpse of the some use cases will demonstrate the real potential of Cartaro. It will also show how the focus and functionality of a Cartaro based application can be extended with the installation of any of the Drupal modules that exist for almost every task one could imagine. The presentation will close with the future perspectives for Cartaro. From a technical point of view this includes the roadmap for the next months. But it also includes a discussion of our ideas about Cartaro's role as self-supporting bridge between the geo and not-so-geo world of open source software.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:23 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Leaflet: Past, Present, Future

Leaflet, a JavaScript library for mobile-friendly interactive maps, has come a long way since its inception. The library started as a one-night hack and evolved over the next two years as a closed proprietary API, developed by one person, and then was finally rewritten from scratch as an open source library in 2011. Leaflet is now the most popular open source solution for publishing maps on the Web. What’s the story behind Leaflet? How did it became so successful so quickly despite strong competition and lack of features? This talk will be presented by its lead developer and will cover lessons learned, the current state of the project and future challenges.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:01 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

LIDAR In PostgreSQL With Pointcloud

How do you store massive point cloud data sets in a database for easy access, filtering and analysis? The new PointCloud extension for PostgreSQL allows LIDAR data to be loaded, filtered by spatial and attribute values, and analyzed via integration with PostGIS. We'll discuss the extension implementation, basics of loading data with PDAL, and how to use PointCloud with PostGIS to do on­the­fly LIDAR analysis inside the database.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
49:15 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

FOSS4G13 Keynote QGIS 2.0

  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:30 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

GraphGIS, Bringing Spatial Functionalities To NoSQL Graph Databases

Driven by the major players in of the Web like Google, Facebook, Twitter, NoSQL databases quickly gained real legitimacy in handling important data volumetry. With a first concept of key-value, NoSQL databases have quickly evolve to meet a recurring relationships between entities or documents. Graph / document paradigm provides flexibility that facilitates the representation of the real world. Beyond the representation of information of social networks, this data model fits very well to the problem of Geo Information, its variety of data models and the interconnections between them. The emergence of cloud computing and the needs driven by the Semantic Web have led publishers of geospatial solutions to consider other ways than those currently used to store and process GIS information. It is in this perspective that Geomatys has developed GraphGIS, a spatial cartridge for OrientDB, the Graph oriented NoSQL database. This solution provides support of geographic Vector, Raster and Sensor data, in multiple dimensions and their associated metadata.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:07 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

FOSS4G In Large-scale Projects

The presentation covers experiences and challenges encountered during the implementation of the Kosovo Spatial Data Infrastructure. The SDI consists of GeoPortal, Cadaster and Land Information System and the Address Register, all implemented on the FOSS stack and interconnected via OGC services.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:47 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

GIS Is Not Dead, It's Coming For You And It's Been Drinking JavaScript

This talk will discuss several super kick-ass ways that JavaScript and the web have re-shaped GIS and are changing how we visualize, analyze and share geospatial data with each other and the world. GIS is dead? No, it’s not, and it’s coming to find you and spatially kick your ass with a big bag of JavaScript. The world changes fast (hello, Internet). Yet, our industry (map making in one form or another) is stuck, and has generally shown itself to be slow to react to new ideas and paradigms that grow rapidly in other spaces. But there is still hope! GIS is coming back, and it’s being re-tooled with lots of shiny new software and geo-weapons. It’s going to make an assault on all of our previous notions of its old self. Of course this new and shiny GIS resembles its former self in many ways, it's also full many new ideas about how we experience maps and data on the web. As we witness a massive resurgence in JavaScript (hello D3 & node.js), and more emphasis placed on the web in general, we see that there are actually still large holes that should be filled the geo-spatial stack. New waves of JavaScript developers have, and will continue to fill these gaps. This talk will discuss several super kick-ass ways that JavaScript and the web have re-shaped GIS and are changing how we visualize, analyze and share geospatial data with each other and the world.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:35 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

MapServer Project Status Report - Meet The Developers!

This session starts with a status report of the MapServer project, followed by an open question/answer session to provide a opportunity for users to interact with members of the MapServer project team. We will go over the main features and enhancements introduced in MapServer 6.2 and 6.4, including the addition of the new TinyOWS and MapCache components, the current and future direction of the project, and finally discuss contribution opportunities for interested developers and users. Don’t miss this chance to meet and chat face-to-face with the members of the MapServer project team!
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:35 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

MapCache: The Fast Tiling Server From The MapServer Project

MapCache is a new member in the family of tile caching servers. It aims to be simple to install and configure (no need for the intermediate glue such as mod-python, mod-wsgi or fastcgi), to be (very) fast (written in C and running as a native module under apache or nginx, or as a standalone fastcgi instance ), and to be capable (services WMTS, googlemaps, virtualearth, KML, TMS, WMS). When acting as a WMS server, it will also respond to untiled requests, by merging its cached tiles vertically (multiple layers) and/or horizontally. Multiple cache backends are included, allowing tiles to be stored and retrieved from file based databases (sqlite, mbtiles, berkeley-db), memcached instances, or even directly from tiled TIFF files. Support of dimensions allows storing multiple versions of a tileset, and time based requests can be dynamically served by interpreting and reassembling entries matching the requested time interval. MapCache can also be used to transparently speedup existing WMS instances, by intercepting getmap requests that can be served by tiles, and proxying all other requests to the original WMS server. Along with an overview of MapCache's functionalities, this presentation will also address real-world usecases and recommended configurations.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:44 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Mapbender3 - Create Your Own Geoportal Web Application And Service Repository

Mapbender3 is a client framework for spatial data infrastructures. It provides web based interfaces for displaying, navigating and interacting with OGC compliant services. Mapbender3 has a modern and user-friendly administration web interface to do all the work without writing a single line of code. Mapbender3 helps you to set up a repository for your OWS Services and to create indivdual application for different user needs. The software is is based on the PHP framework Symfony2 and integrates OpenLayers, MapQuery and JQuery. The Mapbender3 framework provides authentication and authorization services, OWS Proxy functionality, management interfaces for user, group and service administration. In the presentation we will have a look at some Mapbender3 solutions and find out how powerful Mapbender3 is! You will see how easy it is to publish your own application.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:01 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Past, Present, & Future of MapProxy

More than three years ago MapProxy started as a small tile cache with the ability to serve regular WMS clients. MapProxy grew from that to a powerful and flexible proxy for maps. Features like the security API, the ability to reproject tiles, support for coverages from Shapefiles or PostGIS and the various tools are just a few things that make MapProxy to stand out. MapProxy is used in countless projects -- by federal or state agencies and institutions, by universities, students and hobbyists, by small, national and international companies -- all around the world. It is used to combine multiple WMS services to one, make WMS servers available in tiled clients or to restict access to georaphic boundaries. This presentation will show you the most important features that were added to MapProxy in the last years. All features will be explained with practical use cases. Topics: - Cascading WMS: combine multiple heterogeneous WMS services to one, with coverages and unified FeatureInfo - Tiling: create Google Maps/OpenStreetMap compatible tile services from WMS services that do not support the web mercator projection - Tiling: reproject tiles from web mercator to a local projection - Security: give users access to single layers, restricted to user-dependent polygons - Render server: directly integrate MapServer or Mapnik into MapProxy - Tools: calculate scales, estimate the number of tiles, read capabilities, re-seed areas, ... This presentation will also be about the future of MapProxy and the road to version 2.0.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:04 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

A New Dimension To PostGIS : 3D

Talking about 3D used to sound cool. Used to. But for real GIS use, we really need more than just playing with a globe. 3D in GIS becomes cool as soon as we have the ability to deal with full 3D spatial analysis. Just as we already have in 2D, we need functions like intersection, buffer, triangulation and more ... The GEOS library provides us 2D topological processing for years. The CGAL library could now also provide us some interesting additional 3D topological functions. As CGAL is not fully designed for GIS data models, we provide a library inbetween called SFCGAL, in charge of providing a Simple Feature API on top of CGAL. PostGIS 2.1 now allows to link PostGIS and (SF)CGAL, and already provides several exciting 3D functions (and more and more to come). This thrilling talk about PostGIS 3D will therefore focus on : - What kind of project / application needs 3D GIS analysis ? - What can we do right now with PostGIS 2.1 and (SF)CGAL ? - What we will be able to do soon with PostGIS 3D ? - Some tools used to view and manipulate 3D data (QGIS / WebGL based)
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:42 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

A Cellular Automata Land-Use Model For The R Software Environment

A cellular automata model of land-use change developed in the free and open source software environment R is presented. The advantages offered by R as a development environment for a CA land-use model are evaluated, and the pros and cons of the approach employed are discussed in depth with reference to commercial alternatives.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
36:34 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

GDAL/OGR Project Status

An overview of the capabilities of the GDAL/OGR (Geospatial Data Abstraction Library) project will be covered, followed by a focus on new developments in the last two years and future directions for the project.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:25 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

ESA User Services Powered By Open Source

  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:34 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

GeoCat Bridge - Publish From ArcGIS Desktop Into FOSS4G

GeoCat Bridge helps to bridge the gap between proprietary and open source solutions. The goal of this product is to provide a solution that makes it extremely easy for users to publish their data on a GeoNetwork, GeoServer and/or MapServer based server solution. The tool converts the ArcMap symbology to symbology optimized for GeoServer and MapServer. Data can be loaded to the server on the file system or straight into PostGIS. It manages metadata at the source and publishes it as clean ISO19139 metadata. This extension creates a bridge where both proprietary, open source solution providers and open standards supporters are winners.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:39 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

OpenLayers 3: Under The Hood

OpenLayers 3 is the next generation of web mapping. A radical new architecture and the use of cutting edge JavaScript techniques, libraries, and tools enables a full suite of previously unimaginable functionality while maintaining a compact, high performance library. In this talk we'll show you how to use this functionality in your applications, and peek under the hood to see how OpenLayers 3's architecture makes it possible. We'll include: Virtual globe (Cesium) integration: a carefully designed camera and data source abstractions permit close integration with the virtual globes. Switch between 2D and 3D views of the same data, or display synchronized 2D and 3D views side by side. Multiple rendering back-ends: a pluggable rendering architecture supports multiple renderers for maximum performance and portability. A Canvas 2D renderer provides fast, reliable rendering on current devices, a DOM renderer provides fall-back capabilities for older browsers, and a WebGL renderer opens the door to the next generation of performance for the most demanding applications. Rich data sources: generic and powerful core data representations of tiled, single image, and vector data make it easy to add support for a wide range of geospatial data sources. Smooth and flexible interaction and animation: an optimized rendering path ensures that interaction remains smooth at all times. Compact library size: use of the Closure suite of tools creates keeps the build size small while keeping the source code readable.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

PyModis: The Python Library For MODIS Data

pyModis library is a Python library to work with MODIS sensor satellite data. It was originally developed as an interface to download MODIS data from the NASA FTP server but it has grown into a powerful library which also offers further operations on the data. pyModis has several features: - it supports downloading of large numbers of original MODIS HDF/XML files. This is ideal for the automated continuous updating of a local archive through a cron job; - it can parse the XML file to obtain metadata information about the related HDF files; - it can convert a HDF MODIS file to GEOTIFF format; - it can create a mosaic of several MODIS tiles to obtain large coverages including the creation of the merged XML metadata file with information of all tiles used in this mosaic. For format conversion and mosaicing the MODIS Reprojection Tool (MRT) is required, because at time MRT is the best free and open source software to manage original MODIS data and convert them into a different projection system or format while taking care of the special features of the original Sinusoidal projection. pyModis is composed of three modules: - downmodis.py contains a class downModis used to download MODIS data, it requires a “password” for the FTP transfer (usually your email address) and a path where to store the downloaded data. Other parameters are optional, such as the date range or the MODIS product to be downloaded; - parsemodis.py contains two classes, parseModis that parses metadata of a HDF file returning all useful information. It has also the capability to create a configuration file for MRT; the other class is parseModisMulti, it reads metadata of several HDF files, hence it is used to create the XML file for a mosaic. This class is also able to return the bounding box of all the tiles; - convertmodis.py is the module to do some simple operations on the original HDF files such as reprojection. It contains three classes and all of them require the MRT software to be installed. convertModis converts HDF files to GeoTIFF format; createMosaic creates a mosaic from several MODIS HDF files into a single HDF file; and processMosaic converts the raw data of MODIS using swath2grid from MRT-Swath. In pyModis the user can also find five command line tools to easily work with pyModis library: - modis download.py is the tool to download data, - modis parse.py reads metadata of a HDF file, prints information or writes them to a file, - modis multiparse.py reads metadata of several HDF files and prints bounding box or writes the MODIS XML metadata for a mosaic, - modis mosaic.py creates a HDF mosaic from several HDF files, - modis convert.py converts MODIS data to GeoTIFF or other formats and as well as different projection reference systems. During the presentation all these topics will be discussed and illustrated along with more information about the future of pyModis and the tools for the community (how to contribute or how to report a bug or an enhancement).
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
30:25 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Raster Data In GeoServer And GeoTools: Achievements, Issues And Future Developments

The purpose of this presentation is, on a side, to dissect the developments performed during last year as far as raster data support in GeoTools and GeoServer is concerned, while on the other side to introduce and discuss the future development directions. Advancements and improvements for the management of raster mosaic and pyramids will be introduced and analyzed, as well as the latest developments for the exploitation of GDAL raster sources. Extensive details will be provided on the latest updates for the management of multidimensional raster data used in the Remote Sensing and MetOc fields. The presentation will also introduce and provide updates on the JAITools and ImageIO-Ext projects. JAITools provides a number of new raster data analysis operators, including powerful and fast raster algebra support. ImageIO-Ext bridges the gap across the Java world and native raster data access libraries providing high performance access to GDAL, Kakadu and other libraries. The presentation will wrap up providing an overview of unresolved issues and challenges that still need to be addressed, suggesting tips and workarounds allowing to leverage the full potential of the systems.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Taming Rich GML With stETL, A Lightweight Python Framework For Geospatial ETL

Data conversion combined with model and coordinate transformation from a source to a target datastore (files, databases) is a recurring task in almost every geospatial project. This proces is often refered to as ETL (Extract Transform Load). Source and/or target geo-data formats are increasingly encoded as GML (Geography Markup Language), either as flat records, so called Simple Features, but more and more using domain-specific, object oriented OGC/ISO GML Application Schema's. GML Application Schema's are for example heavily used within the INSPIRE Data Harmonization effort in Europe. Many National Mapping and Cadastral Agencies (NMCAs) use GML-encoded datasets as their bulk format for download and exchange and via Web Feature Services (WFSs).
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

The RAGLD (Rapid Assembly Of Geo-centred Linked Data) Framework

As more linked data and open data emerges a need was identified to meet a rising demand for a suite of application developers’ tools to make it easier to bring together, use and exploit these diverse data sets. RAGLD aims to create a set of tools, components and services to make it easier to develop linked Data applications. This talk will describe the RAGLD framework and examples will be given on how it can be used.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:24 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

The Right Approach: How Toscana Is Migrating To GFOSS

The Tuscany Regional Administration had a rather usual proprietary GIS infrastructure (ArcIMS, Oracle, ArcGIS). They started migrating to Open Source GIS with an integrated approach, both on the sever side (PostGIS, MapServer, Geonetworks) and on the client side (Quantum GIS, GRASS), providing also training to hundreds of their technicians. What makes this experience particularly interesting is the fact that they worked form the onset in very close contact with the community, requiring that the code developed for them was generalized, and pushed to main source code. This seemed more cumbersome at first, having to coordinate with several other developers, and not having functions closely fit to their specific needs, but the superiority of this approach become quickly evident, as several functions were further improved and maintained by third parties. Among the most notable achievements were much improved topology support in PostGIS, SLD support in QGIS, and much more. We advise other administrations and enterprises to avoid the temptation of working in isolation, and simply using FOSS4G, maybe tailoring it locally, without contributing back, as this approach is short-lived, and less successful in the long term.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
13:56 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Using NoSQL & HTML5 Libraries To Rapidly Generate Interactive Web Visualisations Of High-volume Spatio-temporal Data

Twitter has developed over the past few years into a potent source of public opinion and comment. The service passed 500 million users in June 2012, collectively posting hundreds of millions of tweets each day, and several high-profile analyses of this data (such as the Twitter Political Index, which mapped sentiment across the US towards the 2012 presidential candidates over the course of their campaigns) have demonstrated its potential for insight and near-time customer feedback. Handling such large volumes and throughputs of data is a sizeable engineering challenge, however, and several commercial ventures (TweetReach, Tweet Archivist - many others) have sprung up specifically to deal with this complexity - at a cost. In addition, many existing solutions are unable to properly utilise the location data that is present in a significant proportion of tweets, losing out on the rich geographical context. This retrospective aims to demonstrate how an informed coupling of emerging open-source component technologies can be used to resolve the complex problems of i. large stored data volumes, ii. real-time streaming input, iii. concurrency of writes and iv. geographically querying and visualising results - with a minimal development outlay. Specifically, the construction of an open-source process to read, process, write, query and visualise streaming, geolocated Twitter data using the MongoDB NoSQL database and D3.js JavaScript library will be detailed, focusing on how MongoDB handles real-time spatial data (including spatial indexes & querying) and the unique features that make D3 so well-suited to visualising and exploring spatial data in the web browser.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:52 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

An Introduction To Open Source Geospatial

  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:13 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Application Development With OpenLayers 3

OpenLayers 3 is a complete rewrite based on the latest in browser technology. This talk will focus on best practices for application development with OpenLayers 3. Covering simple maps in a page, integration with popular MV* frameworks, and native-wrapped mobile apps, we'll look at strategies for building mapping functionality into your applications. OpenLayers 3 aims to provide a high performance library with a wide breadth of functionality. Come learn about how it differs from OpenLayers 2, what makes it stand apart from other alternatives, and how you can best leverage its functionality.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
28:57 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Building Catastrophe Models With Open Data And Open Software

A catastrophe model is a tool/technique which estimates the potential loss of property and life following a major catastrophic event. Different types of events or perils are modelled including; windstorm, earthquake, flood, and storm surge. ELEMENTS is the in-house catastrophe modelling software which is developed by Impact Forecasting, part of Aon Benfield Analytics. Behind the software are models for a wide range of different event and peril types across many countries and regions of the world. To develop the different components of the catastrophe model, Impact Forecasting use a variety of proprietary and open solutions. Open Data sources such as OpenStreetMap, SRTM, CORINE land cover datasets are used, amongst others. The open-source programming language, Python, is also used extensively to create hazard footprints and files needed for the catastrophe model. The use of Open Source software and Open Data supplemented with other available proprietary data sources allow Impact Forecasting to build more flexible and transparent catastrophe models.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:36 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

CDM & TDS Data Server: Earth & Ocean Sciences Meet GIS

Different geoscience disciplines have developed sophisticated domain-specific cyber infrastructures for data storage, manipulation, and visualization. NetCDF, HDF, and GRIB are multi-dimensional array-based data formats widely used in meteorology and oceanography. However, these formats are not fully compatible with the visualization and manipulation tools supported by Geographic Information Systems (GIS), which caters to the discrete vector features and 2D raster formats commonly used in the geography, hydrology, and cartography. By providing a higher level of abstraction and enabling spatial, rather than indexed, data access, the Unidata Common Data Model (CDM) facilitates integration of NetCDF, HDF, and GRIB data into GIS tools, fostering interdisciplinary communication. The THREDDS Data Server (TDS) utilizes the CDM to work efficiently with large, dynamic collections of observational and model data. The TDS organizes these collections into unified, logical datasets, simplifying their access and dissemination. TDS datasets are exposed via the WMS and WCS Open Geospatial Consortium specifications, with support for time and elevation standard dimensions. Alternatively, TDS datasets are accessible through specialized web services that provide subsetting capabilities. The NetCDF Subset Service allows for spatial subsetting, while OpenDAP subsets by index. Finally, metadata discovery systems such as Geoportal and GI-CAT harvest TDS catalog metadata. The TDS ncISO service also serves catalog metadata directly as ISO documents, enabling text searches and exposing a CSW interface on TDS instances through these discovery systems. The CDM & TDS are OpenSource projects (https://github.com/Unidata/thredds) with strong community support. Members have contributed key features, including the ncISO and WMS implementations. Moreover, many interdisciplinary Web-GIS applications have already been successfully developed combining TDS web services with resources from other spatial data infrastructures. Coupled with Unidata's governing committees, the projects provide a unique framework that establishes quality standards and ensures that development meets community needs
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
29:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

3D Web Services And Models For The Web: Where Do We Stand?

In the past years, numerous open source projects have started to display 3D globes and 3D data on the web. Standardizing web services, data format and representation models is, therefore, a very hot topic. There are in particular ongoing efforts on the OGC side as well as on the W3C side. The OGC has released a draft candidate for a 3D web service W3DS, the ISO X3D standard proposes an XML-based file format for representing 3D computer graphics and the W3C is considering adding X3D rendering into HTML5. Other projects implement their own web services and formats. On the implementation side, Geoserver supports W3DS and X3D, the X3DOM library prototypes a possible implementation of X3D HTML5 integration and last but not least, browsers with WebGL support are fully able to handle the representation of 3D data on the client side. The talk is going to detail the mentioned elements, show demonstrations of existing implementations and try to suggest a possible path into the 3D web for the FOSS4G community.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
18:55 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Big Data In Standardization: Can This Fly?

In geo data, a main footprint coming from Big Data stems from remote sensing, atmospheric and ocean models, and statistics data. In the strive for interoperability, standardizaiton bodies establish interface specifications for large-scale geo services. Are these standards really helpful, or do they inhibit performance? We investigate this and show both positive and negative examples, based on OGC, INSPIRE, and ISO standards relevant for scalable geo services.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
32:08 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Processing Data In GeoServer With WPS And SQL Views

This presentation will provide the attendee with an introduction to data processing in GeoServer by means of WPS, rendering transformations and SQL views. We will start by a brief introduction to GeoServer WPS capabilities, showing how to build processing request based on existing processes and how to build new processes leveraging scripting languages, and introducing unique GeoServer integration features, showing how processing can seamlessly integrate directly in the GeoServer data sources and complement existing services. The presentation will move on showing how to integrate on the fly processing in WMS requests, achieving high performance data displays of heatmaps, point interpolation and contour line extraction without having to pre-process the data in advance, and allowing the caller to interactively choose processing parameters. While the above shows how to make GeoSever perform the processing, the analytics abilities of spatial databases are not to be forgotten, the presentation will move on showing how certain classes of processing can be achieved directly in the database. Eventually, the presentation will close with some guidance on how to choose the best processing approach depending on the application needs, data volumes and frequency of update, mentioning also the possibly to leverage GeoServer own processes from batch tools such as GeoBatch. At the end the attendee will be able to easily issue WPS requests both for Vectors and Rasters to GeoServer trhough the WPS Demo Builder, enrich SLDs with awesome on-the-fly rendering transformations and play with virtal SQL views in order to create dynamic layers.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:53 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

Scribe: MapServer Mapfile Development Made Easy

Anyone who has tried to create great looking maps for a large dataset such as OpenStreetMap knows how daunting of a task that can be. Scribe is the solution to this painstaking task. This presentation will introduce this new way to not only edit, but mostly to manage, mapfiles. No matter how much data you have, how many mapfiles or the complexity of your symbology, it will help you sort out the essential by removing the iterative part of the process. Getting rid of all of this error prone copy-paste as well! Scribe is a python script that allows you to write a configuration file instead of a mapfile. The configuration is similar to Basemaps, but simpler to use and less verbose.
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:45 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2013

OpenWIS Opensource Software

OpenWIS OpenSource Software The World Meteorological Organization (WMO) has been working for several years towards upgrading its global infrastructure to support all of its international programmes of work, both operational and research-based, to collect, share and disseminate information. The new infrastructure is called the WIS ( WMO Information System). It identifies three top level functions, namely: • GISC: Global Information System Centre; • DCPC: Data Collection and Production Centre; • NC: National Centre. Météo-France, the UK Met Office, the Australian Bureau of Meteorology, the Korean Meteorological Administration and Meteo France International have developed the OpenWIS software, coupled with their existing systems, to perform the three functions required by the WMO Information System; that is, GISC, DCPC and NC. Based on opensource bricks, with GeoNetwork, OpenAM, JBoss, Apache, Solr and PostGreSQL, OpenWIS is going to become opensource. Beyond the WIS requirements, the OpenWIS consortium is building new functionalities for OpenWIS that will fit the OGC (OpenGeospatial Consortium) and INSPIRE (European directive) aspects, with standards OGC interfaces, a portal providing the viewer function with the discovery, search and request possibilities, and in a short future the billing and the transformation services. The current functional components of OpenWIS are: • Data Service and its cache of essential data • Metadata Service (ISO19115 catalogue synchronised with OAI-PMH protocol) • Security Service • Monitoring and Control • Portal (Discovery, Search, Browse, Request, Subscription) Météo France operates various dissemination tools. OpenWIS provide a generic interface that Météo France has adapted, covering requests for dissemination and their monitoring. OpenWIS interacts with data sources to respond to ad hoc or periodic subscription requests either directly via harness connections or relying on SOA OGC infrastructure. The new challenge of the consortium is to share the opensource model and expand membership beyond the founding members. The reflexion within the consortium enables to give some trends: • A steering committee for the integration of new functionalities (spontaneous or not) • One or two licences (the portal and the metadata component inheriting of the GeoNetwork licence) • A strong but reduced team for the initial developpement (MetOffice and Meteo France) • Git for the management of versioning and integration • The will to put the soft on the shelves of the World Meteorological Organisation • Entrance in the opensource area by the end of 2013
  • Published: 2013
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
out of 2 pages
Loading...
Feedback

Timings

  114 ms - page object
   84 ms - search
    5 ms - highlighting
    1 ms - highlighting/15578
    2 ms - highlighting/15557
    2 ms - highlighting/15512
    1 ms - highlighting/15587
    2 ms - highlighting/15548
    1 ms - highlighting/15590
    3 ms - highlighting/15508
    2 ms - highlighting/15554
    2 ms - highlighting/15576
    2 ms - highlighting/15511
    3 ms - highlighting/15532
    3 ms - highlighting/15541
    2 ms - highlighting/15502
    1 ms - highlighting/15517
    1 ms - highlighting/15503
    2 ms - highlighting/15569
    2 ms - highlighting/15555
    2 ms - highlighting/15585
    2 ms - highlighting/15549
    2 ms - highlighting/15531
    2 ms - highlighting/15553
    1 ms - highlighting/15524
    1 ms - highlighting/15534
    1 ms - highlighting/15574
    2 ms - highlighting/15592
    1 ms - highlighting/15584
    0 ms - highlighting/15518
    1 ms - highlighting/15535
    1 ms - highlighting/15570
    1 ms - highlighting/15527
    1 ms - highlighting/15501
    1 ms - highlighting/15589
    1 ms - highlighting/15533
    3 ms - highlighting/15572
    1 ms - highlighting/15573
    1 ms - highlighting/15514

Version

AV-Portal 3.7.0 (943df4b4639bec127ddc6b93adb0c7d8d995f77c)