Show filters Hide filters

Refine your search

Publication Year
1-36 out of 102 results
Change view
  • Sort by:
25:41 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

istSOS: latest developments and first steps into the OSGeo incubation process

istSOS (http://istsos.org) is an OGC SOS server implementation entirely written in Python. istSOS allows for managing and dispatching observations from monitoring sensors according to the Sensor Observation Service standard. istSOS is released under the GPL License, and should run on all major platforms (Windows, Linux, Mac OS X). The presentation will go through the details of all the new features that will be packed in the next release. In particular the presenters will introduce enhancements that include the Advanced Procedures Status Page and the istSOS Alerts & Web Notification Service. The istSOS Advanced Procedures Status Page is a new section of the Web graphical user Interface, offering at a glance a graphically representation of the Sensor Network health. Administrators can easily figure out common issues related with sensor data acquisition and transmission errors. The istSOS Alert & Web Notification Service are the result of the Google Summer of Code 2014 outputs. This service is a REST implementation that take inspiration from the OGC Web Notification Service (OGC, 2003; OGC, 2006a) and the Sensor Alert Service (OGC, 2006b) which currently are OpenGIS Best Practices. Alerts are triggered by customized conditions on sensor observations and can be dispatched through emails or social networks. This year istSOS is entering into the OSGeo incubation process, this new challenge will permit to enhance the software quality and consolidate the project management procedures. The presenters will present the incubation status and discuss about the next steps.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:56 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Analyzing Fire Department Response with PostGIS

Local government fire departments always face scrutiny of their performance and efficiency. They are continuously asked to do a better job with fewer resources. In this highly technical session we will show how PostGIS is being used to analyze and measure performance throughout the city and plan for future resource requirements. Every city we work with is unique in some way. Some fire departments act as the local ambulance service while other cities contract with private ambulance companies. Emergency “911” response centers are often managed by police/law enforcement departments but not always! Many cities also have “mutual aid” agreements with neighboring cities to assist them when needed. For our customers PostGIS stores and manages the geo-located events (fires, hazardous spills, etc.) and provides details about the departments and individual emergency vehicle performance. It is most interestingly used to create statistical reports about things such as “Effecive Response Force” and “Resource Drawdown”, which are used to measure the efficiency and effectiveness of the department. Please come to learn how PostGIS is used to analyze things such as primary response areas and fire hazard severity zones, allowing our customers to ask more advanced, geographically based questions.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
32:29 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Magical PostGIS in three brief movements

Everyone knows you can query a bounding box or even spatially join tables in PostGIS, but what about more advanced magic? This short symphony of PostGIS examples will look at using advanced features of PostGIS and PostgreSQL to accomplish surprising results: * Using full text search to build a spatially interactive web form. * Using raster functionality to look into the future. * Using standard PostgreSQL features to track and visualize versioning in data. PostGIS is a powerful tool on it's own, but combined with the features of PostgreSQL, it is almost magical.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
32:27 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Towards GeoExt 3 – Supporting both OpenLayers 3 and ExtJS 6

GeoExt (http://geoext.github.io/geoext2/) is Open Source and enables building desktop-like GIS applications through the web. It is a JavaScript framework that combines the GIS functionality of OpenLayers with the user interface savvy, rich data-package and architectural concepts of the ExtJS library provided by Sencha. Version 2.1 of GeoExt (currently in alpha-status) is the successor to the GeoExt 1.x-series and brought support for ExtJS 5 and is built atop the following installments of its base libraries: OpenLayers 2.13.1 and ExtJS 5.1.0 (or ExtJS 4.2.1 at your choice). The next version of GeoExt (v3.0.0?) will support OpenLayers 3 and the new and shiny ExtJS 6 (not finally released at the time of this writing). The talk will focus on the following aspects: * Introduction into GeoExt * New features in OpenLayers 3 and ExtJS 6 and how they can be used in GeoExt * The road towards GeoExt 3 * Results of the planned Code Sprint in June (see https://github.com/geoext/geoext3/wiki/GeoExt-3-Codesprint) * Remaining tasks and outlook The new features of OpenLayers (e.g. WebGL-support, rotated views, smaller build sizes, etc.) and Ext JS 6 (Unified code base for mobile and desktop while providing all functionality of ExtJS 5) and the description of the current state of this next major release will be highlighted in the talk. Online version of the presentation: http://marcjansen.github.io/foss4g-2015/Towards-GeoExt-3-Supporting-both-OpenLayers-3-and-ExtJS-6.html#/
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:05 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

OSGeo and LocationTech Comparison

We have two great organizations supporting our Free and Open Source Software for Geospatial: The Open Source Geospatial Foundation and LocationTech. Putting on events like FOSS4G is primary responsibility of these software foundations - supporting our great open source software is! This talk will introduce OSGeo and LocationTech, and balance the tricky topic of comparison for those interested in what each organisation offers. We will also look at areas where these organizations are collaboration and explore possibilities for future work. Each of these software foundations support for their existing projects, ranging from "release parties" such as OSGeo Live or the Eclipse Annual Release. We are also interested in the ��incubation�� process each provides to onboard new projects. Review of the incubation provides an insight into an organization's priorities. This talks draws the incubation experience of: * GeoServer (OSGeo), GeoTools (OSGeo), * GeoGig (LocationTech), uDig (LocationTech) If you are an open source developer interested in joining a foundation we will cover some of the resource, marking and infrastructure benefits that may be a factor for consideration. We will also looking into some of the long term benefits a software foundation provides both you and importantly users of your software. If you are a team members faced with the difficult choice of selecting open source technologies this talk can help. We can learn a lot about the risks associated with open source based on how each foundation seeks to protect you. The factors a software foundation considers for its projects provide useful criteria you can use to evaluate any projects.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:21 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

High-precision open lidar data enable new possibilities for spatial analysis in the canton of Zurich/Switzerland

The department of geoinformation of the canton of Zurich/Switzerland has carried out a high-resolution laser scanning (LIDAR) last year over the entire canton of Zurich. The extensive data (8 pts / m2) have now been evaluated, and a digital surface (DSM) and terrain model (DTM) created (dot grid of 50 cm and horizonal and vertical accuracies of 20 cm, resp. 10 cm. This is the first time high-resolution elevation data is widely available for the entire canton of Zurich. In the past, lidar data have been collected only for small-scale projects. As a novelty, the department has decided to provide the lidar data and its derived products, i.e. DTM and DSM, as open data to the public. With this decision new standards are set not only in terms of accuracy and scope, but also in the usage as open government data. The lidar data can provide valuable support for example in the areas of infrastructure, urban planning, regional planning, natural hazard assessment, forestry, environment, energy, line survey, solar potential analysis, surveying, archeology, agriculture, water or noise. Due to the planned repetition cycle of four years even time series and monitoring projects are possible. Therefore it is not surprising, that since the opening as open data, many interesting applications using this data have been created. The presentation will show the high-resolution data and its possible usage for terrain-visualizations. A selection of the most appealing visualizations will be demonstrated, e.g. an Oculus Rift version enabling the user to navigate through virtual reality. It will further give an insight in the challenge of opening up the LIDAR?data for the public, i.e. setting up an open-data strategy in the cantonal administration of Zurich.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:15 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Using the latest ISO standard for geographic information (ISO19115-1:2014)

Release in April 2014, this talk will introduce the major changes of the new standard for metadata on geographic information and what are the benefits for the data managers. It will be illustrated by its implementation in the latest GeoNetwork 3 version and with examples on how the Wallonia Region in Belgium migrated to it.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:21 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

GeoCouch: Operating multidimensional data at scale with Couchbase

Couchbase is a distributed document-oriented NoSQL database. You store the data as JSON and then build indexes with simple JavaScript functions. This talk is about the multidimensional index capability of Couchbase. This means you can index not only geographic data (encoded as GeoJSON) but any additional numeric attributes you like. Such a multidimensional query might be used for an application about car sharing. You would e.g. query for all the cars in a certain area, but you're also interested in additional attributes. Let's say you want to display only cars where at least four people fit in. Or you want one with air-conditioning. Such attributes would be the additional dimensions. In this case it would be 4-dimensional query, two for the location and two for additional attributes. Quite often GeoHash is used for implementing a spatial index, which has some limitations. A notable one is that you need to know that maximum range of your data upfront as it's a space partitioning algorithm. It is good enough for purely geospatial data, but as soon as additinal attributes like time are needed, it might become an issue. GeoCouch takes a more traditional approach like PostGIS and uses an R-tree which is data partitioning, hence you don't need to know the extent up-front. Another focus of this talk will be on the operational strengths Couchbase has. One thing is the web interface that makes administrating clusters very easy, even when there's a failure. The other thing is that you can easily restart servers, e.g. when a Linux Kernel upgrade is due, without any downtime on the full cluster. The system stays operational and handles those upgrades gracefully. In the end you will have a good overview on why you really want to use a multidimensional indexing for your remote sensing data or points of interest in your location aware mobile app. GeoCouch is fully integrated into Couchbase, there's no additional setup needed to get started. All source code from Couchbase is licensed under the Apache 2.0 License. Links: - Couchbase: http://www.couchbase.com/ - Source code: https://github.com/couchbase/manifest - GeoCouch: https://github.com/couchbase/geocouch
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:02 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Fast Cache, Fresh data. Can we have it all?

  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:44 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

CartoDB Basemaps: a tale of data, tiles, and dark matter sandwiches

CartoDB is an open souce tool and SaaS platform that allows users to make beautiful maps quickly and easily from their own data. To complement our users needs, we launched last year our free-to-use open source OSM based basemaps Positron and Dark Matter (https://github.com/CartoDB/CartoDB-basemaps), designed in collaboration with Stamen to complement data visualization. While architecturing them, we had several compromises in mind: they had to be powered by our existing infrastructure (powered by Mapnik and PostGIS at its core), they had to be scalable, cacheable but frequently updated, customizable, match with data overlays, and, last but not least, they had to be beautiful. This talk is the tale of the development process and tools we used, how we implemented and deployed them and the technology challenges that arose during the process of adapting a dynamic mapping infrastructure as CartoDB to the data scale of OSM, including styling, caching, and scalability, and how (we think) we achieved most of those. I will also talk about the future improvements that we are exploring about mixing the combination of basemap rendering with data from other sources, and how you can replicate and tweak those maps on your own infrastructure.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Use case of a dual open strategy in the canton of Zurich/Switzerland

With a dual 'open'-strategy the department of geoinformation at the canton of Zurich/Switzerland opts for a strategic orientation towards open source and open data: Open in the sense of an open web-mapping- infrastructure based on open source components: Mapfish Appserver was developed as a framework for building web map applications using OGC standards and the Mapfish REST protocol. It is freely available under the new BSD-license (http://mapfish-appserver.github.io/). The Ruby on Rails gem comes with the following out-of-the box features: - Organize maps by topics, categories, organisational units, keywords and more - Combine maps with background and overlay topics with adjustable opacity - Import UMN Mapserver mapfiles to publish new topics within seconds - Fully customizable legends and feature infos - Creation of complex custom searches - Rich digitizing and editing functionality - Role-based access control on topic, layer and attribute level - Access control for WMS and WFS - Rich library of ExtJS 4 based map components - Multiple customizable viewers from minimal mobile viewer to full featured portal - Multi-site support - Built-in administration backend - Self-organized user groups maps.zh.ch, the official geodata-viewer of the canton of Zurich, was developed using Mapfish Appserver. It contains more than 100 thematic maps and is considered an indispensable working tool for everyone working with spatial data in the canton of Z?rich/Switzerland. 'Open' in the sense of Open Government Data: Zurich is the first canton participating in the national open data portal opendata.admin.ch. The portal has the function of a central, national directory of open data from different backgrounds and themes. This makes it easier to find and use appropriate data for further projects. The department of geoinformatics aims to open as many geo-datasets as possible for the public by publishing them on the national OGD-portal. The open geodata is issued in form of web services ? Web Map Services (WMS), WebFeature Services (WFS) and Web Coverage Services (WCS) - and contains a wide range of geodata from the fields of nature conservation, forestry, engineering, infrastructure planning, statistics to high resolution LIDAR-data.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
20:29 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Opening Address Data around the World

With over 110 million points, OpenAddresses.io has grown to be the largest open database of address data in the world. Governments, developers and businesses are realizing that address data belongs in a commons where it can be easily maintained, used by all, and drive economic growth. These early efforts are now powering some of the world's best commercial geocoding systems, as well as crucial infrastructure like emergency responders. But there's more work to do. We need to reform outdated laws, expand coverage to new cultural contexts, untangle shortsighted licenses, and invent new modes of collaboration between the public and government. We'll cover how OpenAddresses started, how it can be used today, and how we expect it to grow into a definitive global resource.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:20 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Map publishing with or without programming skills

This presentation will showcase the use of Oskari (http://oskari.org/oskari) in publishing embedded map applications. The typical use case doesn't require any programming skills. You only need to select the map layers and tools that will be available in the application. After that, you can customize the user interface (size, colors, tool layout etc.). As a result the publishing tool will give you a HTML-snippet to embed to any web site. The supported web services are WMS, WMTS, WFS and Esri REST. If your data is not readily available through a web service, you can import data. Shapefiles, KML, GPX and MID/MIF-files are supported. There's an extensive selection of tools at your disposal: index map, centering to user��s location, address and place name search, attribute table (for vector data) to name a few. Integrating the map application with the surrounding web page makes more advanced use cases possible. All you need is a few lines of JavaScript to use the RPC interface (http://www.oskari.org/documentation/bundles/framework/rpc). With RPCs you can control the map application from the parent document and vice-versa. They can also exchange information. This enables you to develop highly interactive web applications with always up-to-date data. In the presentation an example application made using Oskari and D3 will be showcased.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
29:02 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Improving public health delivery in northern Nigeria using open source technologies

  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:10 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

GIS-modelling of long-term consequences after a nuclear accident.

In order to evaluate consequences of deposited radioactive cesium (and other radioactive substances) in natural systems a GIS based model called Stratos has been developed. This model incorporates information regarding deposition, transfer to vegetation and animals, intervention levels and geographical distribution of animals. The presentation will use a case study which describes the possible environmental consequences for Norway due to a hypothetical accident at the Sellafield complex in the UK. The scenario considered involves an explosion and fire at the B215 facility resulting in a 1 % release of the total HAL 1 inventory of radioactive waste with a subsequent air transport and deposition in Norway. Air transport modeling is based on real meteorological data from October 2008 with wind direction towards Norway and heavy precipitation. This weather is considered to be quite representative as typical seasonal weather. Based on this weather scenario, the estimated fallout in Norway will be ~17 PBq of cesium-137 which is 7 times higher than fallout after the Chernobyl accident. The modeled radioactive contamination is linked with data on transfer to the food chain and statistics on production and hunting to assess the consequences for foodstuffs. The investigation has been limited to the terrestrial environment, focusing on wild berries, fungi, and animals grazing unimproved pastures (i.e. various types of game, reindeer, sheep and goats). The results of a model-run are maps for the chosen products, with categorized colors - giving the degree of consequences. A linked text file gives relevant numeric values for each color. The Stratos model is written in python which calls GRASS-functions and uses as gui for model setup. The model has been used for two reports at the Norwegian Radiation Protection Authority, and is currently being used and developed further in the "Centre for Environmental Radioactivity" (CERAD), cerad.nmbu.no.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:20 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Case study: A full-fledged cutting-edge FOSS4G map production system

The development and the usage of National Land Survey of Finland's dynamic and high performance map production system is described in this presentation. The system is currently in use and serves map images both to customers and to NLSFI production systems. The data in the map production system are open data and being updated on a weekly basis. When the data get updated, a RSS-feed is generated. Based on the feed, the map products are updated. Data is stored, updated and replicated in PostGIS. Map pictures are rendered in GeoServer. The visualization of the maps is based on SLD-stylesheets. SLD-stylesheets enable the same data to be visualized in several different ways. GeoServer in conjunction with SLD-stylesheets offers a Web Map Service (WMS). Map images are delivered via a high performance MapCache Web Map Tile Service (WMTS) and as image files via NLSFI download service. The system is designed to be expandable and is currently being further developed to enable the pro-duction of on-demand printed maps.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:27 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Decision-making system for grants for maintaning services in rural areas

Sweden is a sparsely populated country. Normally market forces would regulate the number and location of both public and commercial services as schools, medical care, grocery stores and pharmacies. In sparsely populated areas these forces does not work. The Swedish government has realized this and gives economical support to some services in order to maintain or in some cases expand the service level. The aim with this grants is to provide conditions for living, working and contribute to economic growth in these in remote areas. To be as effective as possible a decision making system has been developed to support the administrators of the grant. The system allows the administrators to monitor the current situation, update changes in the service structure and simulate fictive scenarios. The system is built on an open source platform and is available through the internet to authorized administrators on the regional level of the Swedish administration. As platform for the system the following open source projects and formats are used GeoExt, Ext JS, Openlayers, Mapfish, Pylons, GEOAlchemy, Mapserver, PostGIS, GeoJSON.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

OpenDroneMap, Next Steps: Toward optimization and better 3D modeling

OpenDroneMap is an open source toolkit for processing drone imagery. From raw imagery input, it outputs a georeferenced pointcloud, mesh, and orthophoto. This is a powerful toolkit to change unreferenced arbitrary images into geographic data. Next steps in the project are needed to improve optimization of underlying algorithms, steps to better create meshes / textured meshes from the resultant pointclouds by explicitly modeling surfaces, and to make better output data from lower quality inputs. Come and see where the project is at, how the state of the art is advancing, and how you can use it and contribute.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:36 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

On simulation and GIS, coupling and hydrology

This presentation shows how to better integrate simulation codes and Geographical Information Systems, and takes the example of Hydrological modelling integration into QGIS. Scientific modelling and simulations are present in a large number of areas. A significant proportion of simulation codes are applied spatially, at different levels, from a neighborhood scale up to worldwide areas. These simulation codes take spatial information as input data, and output results which are related to space too. But most of the time, they do not directly handle GIS data. Data types and data formats are different, and there is therefore a lot of effort to put into pre-processing and post-processing of the data to get it from GIS to the simulation codes and back. For example, determining the diffusion of a pollutant leak into underground water necessitates to get a DEM, location of the leak, geological data and more from the GIS, and transform it to simulation code input format. Then launch a simulation (on finite volumes e.g.), and convert the output into GIS files so that to be able to visualize spatial repartition of the pollutant according to time. The topic of this presentation is therefore to show how to better interact between simulation and GIS. We present the prevalent types of data for simulation, how they differ from GIS, and how we usually transfer from one type to another. Then we show how we worked towards better integration. Polygonal meshes are the most common way of representing 2D geometries for simulation purposes. Integrating simulation to a GIS requires storing georeferenced meshes in a databases (or using standard GIS file formats), and being able to use simulation values interpolated over the elements as a map layer. We show how to modify simulation codes to read directly a mesh from a GIS and write the results into a GIS. We implemented a new type of layer for QGIS, a mesh layer, which enables to display simulation results with high performances. This takes into account the temporal dimension. We also demonstrate how to integrate a simulation code into QGIS Processing so that it can be managed directly from within the desktop application. We illustrate these concepts with a demonstration of a full integration of a Hydrological simulation tool inside QGIS, with simulation management, custom user interface and strong integration of data between the simulation code and GIS data. In this sense the FREEWAT project started mid-2015, which aims at integrating multiple Hydrological codes into QGIS is also a good example of simulation and GIS integration. We end up with the perspectives for more global integration of simulation tools and GIS, and the work still to be done to bridge the gap between those two worlds.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:59 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

ZOO-Project 1.5.0: News about the Open WPS Platform

ZOO-Project is an Open Source Implementation of the OGC Web Processing Service (WPS) available under a MIT/X-11 style license and currently in incubation at OSGeo. ZOO-Project provides a WPS compliant developer-friendly framework to easily create and chain WPS Web services.This talk give a brief overview of the platform and summarize new capabilities and enhancement available in the 1.5.0 release. A brief introduction to WPS and a summary of the Open Source project history with its direct link with FOSS4G will be presented. An overview of the ZOO-Project will then serve to introduce new functionalities and concepts available in the 1.5.0 release and highlight their interests for applications developers and users. Evolutions and enhancements of the ZOO-Project WPS server (ZOO-Kernel) will first be detailed especially regarding compliancy (WPS 1.0.0 and 2.0), performance and scalability. The ZOO-Project optional support for Orfeo Toolbox and SAGA GIS will then be introduced, with details on the numerous new WPS Services (ZOO-Services) they provide. Use and connexion with other reliable open source libraries such as GDAL, GEOS, MapServer, GRASS GIS, CGAL will also be reviewed. Examples of concrete applications will finally be shown in order to illustrate how ZOO-Project components (ZOO-Kernel, ZOO-Services, ZOO-API and ZOO-Client) can be used together as a platform to build standard compliant advanced geospatial applications. Along with the new 1.5 release, this talk will also present how ZOO-Project is being developed, extended and maintained in the context of the EU funded PublicaMundi research project.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:51 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Taking dynamic web mapping to 1:100000 scale

CartoDB is growing to be one of the biggest mapping platform for the masses, being powered by a fully open-source stack, with PostgreSQL, PostGIS, Mapnik and Leaflet at its core. Our aim is to democratize map and geographical data visualization, making it easy for non-GIS people to create simple maps using the CartoDB Editor, but still keeping all the power and flexibility of the underlying components available to advanced users, with a variety of building blocks ranging from the frontend with CartoDB.js and Torque to the backend with the Map, SQL and Import API, parts of what we call the CartoDB Platform. Serving dozens of millions of map tiles daily has its own set of problems, but when they are being created by hundreds of thousands of users (which have their own database and can alter everything from styling, to the data sources and the SQL queries applied) everything turns out to be a big source of challenges, both development and operationally speaking. This talk will go through our general architecture, some of the decisions we’ve had to take, the things we’ve learned and the problems we’ve had to tackle through the way of getting CartoDB to scale at our level of growth, and how we're giving back to the community what we've discovered though the process.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:27 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Earning Your Support Instead of Buying it: A How-to Guide to Open Source Assistance

More organisations are moving to use FOSS4G software to cover shrinking budgets. It is very appealing to an organization’s leaders to ditch their current proprietary software solution with the attendant saving on per user licences and ongoing maintenance costs. Obviously, if you switched to FOSS4G to get better features and scalability you should consider buying a support contract from one of the many vendors that offer them, these companies support many of the core developers directly. This way you get all the advantages of open source, prompt support and often the chance to ask for new features. However, if you (or your boss) are looking to save money then you are moving from a cash economy to a gift economy. In a gift culture you need to build up your “capital” before attempting to take too much out. For example, you’ve downloaded the software and installed it, and all looks good. Then disaster hits, you have a demo for the CIO and nothing's working; Time to hit the user list, the developer list, stack exchange. Why can’t you get an answer? Remember just because your issue is urgent to you the developers might be in the middle of a new release or adding a new feature and have more important (or fun) things to do with their time. They will notice they have never seen your name before on the list, or on Stack Exchange that you have a reputation in the single digits – thus you are a newbie. There’s no harm in that but wouldn’t it be better to have got that out of the way before your emergency. You could have built up your reputation by asking some questions earlier especially questions like “what can I do to help?” or “I found an unclear paragraph in the install instructions, how do I fix it for you?” on a mailing list. On StackExchange you can build reputation by asking good questions and by answering other people’s questions. Once you’ve banked some capital there are still good and bad ways of asking a question. Developers are busy people (the GeoTools users list has 20-30 messages a day for example) no one has time to read all of them closely. If you use a poor subject (e.g. "Help!!!!") or don’t provide a clear description of the problem (e.g. “it crashes”) then the odds of being ignored are huge. It can be tempting once you have found a helpful developer to keep emailing them directly, but this is likely to lead a polite(ish) reminder to keep to the list so that everyone can benefit or silence. This talk will show how to be a better open source citizen and get a better answer than RTFM when your project is stuck and the demo is the next day. The author will share his experience with helping users and developers on the GeoTools and GeoServer mailing lists and as a moderator on gis.stackexchange.com.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:07 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

The OpenStreetMap Revolution

OpenStreetMap is at the center of a data and software revolution that has completely changed what we expect from maps and how we interact with them. The project has defined open map collaboration, it is a cradle of open software innovation, is used by businesses and governments, enables startups against industry giants and has opened the power of GIS to the underprivileged and poor. OpenStreetMap is only one of very few commercially viable global geospatial datasets. Ten years into the project, it is clear that OpenStreetMap is not an impossible quest nor a fluke of history, but it is here to stay and grow. An amazing and growing community, this year, OpenStreetMap crossed the two million users mark. Every month, 30,000 users log into the map and improve it. And OpenStreetMap stands to attract even more attention: Data of large proprietary vendors continues to be effectively not available to a huge part of the market due to rigid licensing; rumors around Nokia's HERE changing owners are at an all time high. This talk sweeps through OpenStreetMap's history and gives a detailed look at the state of the project in statistics and visualizations, including recent map developments in Asia. It reviews OpenStreetMap's strengths and weaknesses and makes predictions for the future of OpenStreetMap. We'll finish up with opportunities and needs for the project to grow as an open data community and a suite of open source software tools.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:17 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

MapWindow Plug-in of GRM Model Using Open Source Software

This presentation shows the processes and methods for developing distributed rainfall-runoff modeling system using open source softwares. The objective of this study is to develop a MapWindow plug-in for running GRM (Grid based Rainfall-runoff Model) model (MW-GRM) in open source GIS software environment. MW-GRM consists of the GRM model, physically based rainfall-runoff model developed by Korea Institute of Civil Engineering and Building Technology (KICT), for runoff simulation, pre and post processing tools for temporal and spatial data processing, and auto-calibration process. Each component is integrated in the modeling software (MW-GRM), and can be run by selecting the MW-GRM menus. In developing MW-GRM, free software and open source softwares are used. GRM model was developed by using Visual Basic .NET included in Microsoft Visual Studio 2013 express, pre and post processing tools were developed by using MapWindow (Daniel, 2006) and GDAL (Geospatial Data Abstraction Library), and PEST (John, 2010) model was used in the auto-calibration process. The modeling system (MW-GRM) was developed as MapWindow plug-in. System environment was Window 7 64bit. MapWindow GIS ActiveX control and libraries were used to manipulate geographic data and set up GRM input parameters. ESRI ASCII and GeoTIFF raster data formats, supported by MapWindow and GDAL, were applied and shape file (ESRI, 1997) was used in vector data processing. GDAL is a library for translating vector and raster geospatial data. In this study, GDAL execution files were used to develop pre and post processing tools. The tools include data format conversion, spatial interpolation, clipping, and resampling functions for one or more raster layers. PEST is a model-independent parameter estimation software. Parameter estimation and uncertainty analysis can be carried out using PEST for model calibration and sensitive analysis. PEST is developed as an open source software, and single and parallel execution files are provided. This study developed GRM uncertainty analysis GUI as an interface system of GRM and PEST. GRM model had been a DLL type library including APIs to support developing another application. But PEST needs a model execution file, which can run in console execution window without user intervention. This study developed GRM execution file (GRMMP.exe) running in console window. It can simulate runoff using GRM project file, and no user intervention is allowed after the simulation has started. GRM uncertainty analysis GUI makes PEST input files (pcf, pif, ptf, rmf, etc.) by setting GRM parameters, observed data, PEST parameters, and selecting single or parallel PEST and PEST run automatically using GRMMP.exe file. In this study, all the functions necessary to develop GRM modeling system and pre and post processing tools could be implemented by using open source software. And MapWindow plug-in of GRM model can simulate runoff in open GIS environment including automatic model calibration using PEST. The study results can contribute to the wide spread of physically based rainfall-runoff modeling. And this study can present useful information in developing distributed runoff modeling system using open source software.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

MapCache: Fast and Featureful tile serving from the MapServer project

MapCache is a tiling server component designed to be efficient while still comprising all the features expected from a modern tiling solution. This presentation will give a brief presentation of the MapCache tiling solution, along with the recent developments that were added to reply to the needs of large scale installations (cache replication, load balancing, failsafe/fallback operations, large cache management, etc...)
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:50 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

WPS Benchmarking Session

The yearly Web Processing Service (WPS) benchmark. Variuos WPS implementations will be tested regarding their capabilities, compliancy to the standard and performance. Traditionally, each participating project designates individuals from their community to participate in this talk to introduce their project and summarize its key features. The focus this year will be on compliancy and interoperability. We will present the test set-up, participating WPS projects and the results of the benchmark.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
27:05 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Utilizing Free Open Source Software and Open Data in the Crop Suitability Analysis of Adlai for Climate Change Adaptation

With 43,000 square kilometers of rice producing farm lands, the Philippines is considered as the largest rice importer in the world according to World Rice Statistics (2008). The increasing demand for imported rice in the country has been largely attributed to topography, underutilized farm infrastructures, typhoons and rapid population growth. Given the need to supply a stable food source to Filipinos, the Department of Agriculture (DA) has been studying the feasibility of the mass production of Coix lacryma-jobi L or Adlai, a traditional food source abundantly grown by indiginous people in the country for centuries. In contrast to rice, Adlai is naturally resilient to pests, diseases, droughts and floods, and does not need irrigation. In its study, the Department of Agriculture wanted to evaluate the adaptability of Adlai in different parts of the country for it to become a complementary staple food for Filipinos. The results of the tests in four regions (II, IV, V, and IX) have been very promising. The study found that Adlai does not need fertilizers and insecticides, it can survive with minimal rainfall, and it can be planted in upland areas. To complement the current work of the Department of Agriculture, this study aims to map the agro-edaphic zones or the areas that are suitable for the cultivation of Adlai. It will apply free open source software (QGIS) and open data sources (ASTER GDEM, PhilGIS, and DA). The selected set of variables (slope, elevation, and soil order) will be cross tabulated, and the result will represent generalized classes of associated soil orders in combination with both elevation and slope. The result of this study could then be utilized by the Department of Agriculture to determine areas in Region 11, excluding the arable land for rice, that are suitable for the cultivation of Adlai. Sources: Japan-Space Systems, Phil GIS, Manila Observatory, Environmental Science for Social Change, Department of Agriculture, Bureau of Agricultural Research.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
20:31 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

The way to go with WPS

How to find your way in difficult terrain, with obstacles, hazards, and deep snow? We present a solution for cross-country path planning and mobility, based on OSGeo software and open data. A large graph representing terrain, roads, and paths is stored in PostGIS for use with the pgRouting module of shortest path algorithms. The graph is based on detailed topography, soil type and vegetation data, and edge weights can be adapted for hikers and vehicles. The application is service oriented and held together by the Web Processing Service (WPS), the OGC interface standard for computation-oriented web services. A key component is the ZOO WPS server. The presentation will discuss WPS benefits and describe graph and weight generation, including challenges such as accounting for dynamic data about temporary hazards, weather, etc.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:51 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Visualizing Fire Department Responses with CartoDB

Local government fire departments need to demonstrate their performance and efficiency. In this session we will show how CartoDB and Torque are being used to visualize fire department responses to emergency events throughout the city allowing city officials to better understand how they are performing. We will also briefly discuss why routing based on Open Street Maps is not yet sufficient enough to be used for this analysis. Effective Response Force (ERF) is one method that fire departments use to measure their level of success. An ERF is a set of specific resources required to perform a particular task within a set amount of time. For example, the Effective Response Force for a residential building fire, which is less than 200 square meters in size, needs to be four fire engines, one ambulance and a fire chief. These resources may be coming from different fire stations; they may be coming directly from other emergency events. They may even come from neighboring cities. Using CartoDB and Torque we can visualize several things; the expected travel routes each of these resources may have taken, compare these routes to expected drive-times based on GIS road network analysis and also show the order in which each of these resources arrived at the destination.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
16:07 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Dynamic analysis, reporting and visualization of metadata catalogue

More and more geospatial resources (datasets, services, maps, ...) are described in metadata catalogs. Now, users need to be able to get an overview of the resources available (eg. data quality, dissemination formats) for evaluating their data policies. This could be achieve with tools for analyzing and reporting on large sets of information and dynamically compute reports and build dashboards. This presentation will show how to collect information from CSW catalogs, compute reports and indicators and build and publish online dashboards using Solr and banana opensource projects. This will be illustrated by the INSPIRE Directive monitoring in Europe and the MedSea project.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:49 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Temporal Maps leading to new views in Spatial Analysis

Cloud-based mapping technologies are changing the way that the world interacts with GIS. Technologies that allow for aggregate querying of data that is both geospatial and temporal presents unique challenges and fruitful lines of inquiry. At CartoDB, we are pushing ahead with new ways of looking at spatio-temporal data visualization--which we have named Torque--, with intriguing results for both scientists and journalists. In this session, we will present use cases that offer unique ways of looking at data. We will also present challenges that lie ahead with our unique technology. My background in mathematical physics studying timeseries analysis has led to interesting insights and crossovers with the developers/hackers that originated the underlying technology. I hope to present the many lessons we've learned from Torque.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:55 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

State of GeoServer

State of GeoServer reviewing the new and noteworthy features introduced in the past year. The project has an aggressive six month release cycle with GeoServer 2.7 and 2.8 being released this year. These releases bring together exciting new features. A lot of work has been done on processing services with clustering, security and processing control. The rendering engine continues to improve with the addition of color blending opening up a range of creative possibilities. The CSS extension (used to easily generate OGC standard styles) has been cleaned up with a rewrite. This talk will highlighted updates on data import, application schema use, data transforms and the latest from the developer list. Attend this talk for a cheerful update on what is happening with this popular OSGeo project. Whether you are an expert user, a developer, or simply curious what these projects can do for you, this talk is for you.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:17 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

PostGIS Feature Frenzy

What can you do with this PostGIS thing? This talk covers some basic and not��so��basic ways to use PostGIS/PostgreSQL to process spatial data, to build infrastructures, and to do crazy things with data. PostGIS has over 300 functions, which in turn can be used with the many features of the underlying PostgreSQL database. This talk covers some basic and not��so��basic ways to use PostGIS/PostgreSQL to process spatial data, to build infrastructures, and to do crazy things with data. Consider the possibilities: raster, topology, linear referencing, history tracking, web services, overlays, unions, joins, constraints, replication, json, xml, and more!
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

CourtVisionPH: A System for the Extraction of Field Goal Attempt Locations and Spatial Analysis of Shooting Using Broadcast Basketball Videos

The presentation is about the development and application of CourtVisionPH. CourtVisionPH is a system developed for the extraction, storage, and analysis of basketball-related spatial information. It focuses on the extraction of field goal attempt (FGA) locations from broadcast basketball videos and the spatial analysis of shooting by means of statistics and maps/visualizations. The system was developed using the Python Programming Language. It features a database for storing spatial and non-spatial information and a Graphical User Interface (GUI) to help the user and the system interact. The modules used in the development include Tkinter for the GUI, SQLite for the database, Numpy for the computations, Pillow for image processing, and OpenCV for video rendering. The system has three independent but interconnected functionalities each with its own specific task: (1) Data Management which handles database connections, (2) Spatial Data Extraction for user-assisted extraction of FGA locations from videos using 2D-projective coordinate transformation and validation of transformed FGA locations sing RMSE and back-transformation, and (3) Spatial Analysis that computes statistics, generates maps/visualizations, and query-based analysis. After the development of the system, it was applied on UP Fighting Maroons and the DLSU Green Archers during the 2nd Round of University Athletics Association of the Philippines (UAAP) Season 76 (2013-2014). Videos publicly available online through youtube.com were used for extracting field goal attempt locations. Shots taken too far from the basket (half-court heaves, etc.) or those with bad RMSE or back-substitution results were excluded from the extraction. The extracted FGA locations were then validated using box-scores. Afterwhich, the system was used to analyze and compare the two teams and their players using statistics and visualizations and show that spatial analysis provides more information and allows for better characterization and appreciation of shooting than conventional, non-spatial techniques.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:49 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

PDAL: the Pointcloud Data Abstraction Library

An introduction to the PDAL pointcloud library, how to accomplish basic things, push data to plas,io, a webgl rendered and an introduction to GreyHound, the PDAL API. PDAL, GreyHound provide all the basic tools for pointcloud data translation and manipulation and hooks for various other projects to use the PDAL read/write engine (eg, PCL, Points2Grid)
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:48 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

New QGIS functions for power users

QGIS has seen a large amount of new functions and improvements during the last few years. And there is still more to come. This presentation shows the most recent changes and new functionalities in the codebase after version 2.8, both from a users and from a technical point of view: Curved geometries have long been a missed feature in FOSSGIS Desktop solutions, with such geometries usually ending up being segmented on import. A rewrite of the QGIS Geometry core now allows for native support of a number of curved geometry types, such as CircularString, CompoundCurve, CurvePolygon, etc., in addition to the traditionally supported Point, Line and Polygon geometries. As part of the redesign, proper support for M and Z coordinate values was also implemented for all supported types. Geometry errors can easily sneak into large datasets, either because of inexact data acquistion, but also due to gradual loss of precision when importing, exporting and converting the datasets to different formats. Manually detecting and fixing such issues can be very time consuming. To assist users confronted with such problems, the 'Geometry checker' has been developed. It provides the functionality to test a dataset for geometry and topology issues (such as duplicate nodes, overlaps, gaps, etc), presenting a list of detected faults. For each error type, the plugin offers one more more methods to automatically fix the issue. A third new function in the geometry domain is the snapper plugin. It allows to automatically align the boundaries of a layer to a background layer (e.g. align the parcel boundaries with a road background layer).
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
out of 3 pages
Loading...
Feedback

Timings

  156 ms - page object
   75 ms - search
    2 ms - highlighting
    0 ms - highlighting/32110
    1 ms - highlighting/32132
    0 ms - highlighting/32087
    1 ms - highlighting/32167
    1 ms - highlighting/32101
    1 ms - highlighting/32080
    0 ms - highlighting/32163
    1 ms - highlighting/32113
    2 ms - highlighting/32102
    1 ms - highlighting/32099
    0 ms - highlighting/32086
    1 ms - highlighting/32145
    1 ms - highlighting/32104
    2 ms - highlighting/32156
    1 ms - highlighting/32094
    2 ms - highlighting/32135
    2 ms - highlighting/32095
    1 ms - highlighting/32123
    1 ms - highlighting/32127
    1 ms - highlighting/32159
    1 ms - highlighting/32084
    1 ms - highlighting/32124
    1 ms - highlighting/32166
    1 ms - highlighting/32112
    1 ms - highlighting/32088
    1 ms - highlighting/32089
    0 ms - highlighting/32122
    0 ms - highlighting/32165
    0 ms - highlighting/32142
    0 ms - highlighting/32108
    1 ms - highlighting/32130
    0 ms - highlighting/32131
    1 ms - highlighting/32141
    1 ms - highlighting/32140
    1 ms - highlighting/32129
    1 ms - highlighting/32093

Version

AV-Portal 3.7.0 (943df4b4639bec127ddc6b93adb0c7d8d995f77c)