Show filters Hide filters

Refine your search

Publication Year
1-36 out of 75 results
Change view
  • Sort by:
25:41 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

istSOS: latest developments and first steps into the OSGeo incubation process

istSOS (http://istsos.org) is an OGC SOS server implementation entirely written in Python. istSOS allows for managing and dispatching observations from monitoring sensors according to the Sensor Observation Service standard. istSOS is released under the GPL License, and should run on all major platforms (Windows, Linux, Mac OS X). The presentation will go through the details of all the new features that will be packed in the next release. In particular the presenters will introduce enhancements that include the Advanced Procedures Status Page and the istSOS Alerts & Web Notification Service. The istSOS Advanced Procedures Status Page is a new section of the Web graphical user Interface, offering at a glance a graphically representation of the Sensor Network health. Administrators can easily figure out common issues related with sensor data acquisition and transmission errors. The istSOS Alert & Web Notification Service are the result of the Google Summer of Code 2014 outputs. This service is a REST implementation that take inspiration from the OGC Web Notification Service (OGC, 2003; OGC, 2006a) and the Sensor Alert Service (OGC, 2006b) which currently are OpenGIS Best Practices. Alerts are triggered by customized conditions on sensor observations and can be dispatched through emails or social networks. This year istSOS is entering into the OSGeo incubation process, this new challenge will permit to enhance the software quality and consolidate the project management procedures. The presenters will present the incubation status and discuss about the next steps.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
20:49 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Semantic assessment and monitoring of crowdsourced geographic information

Whilst opensource software allows for the transparent collection of crowdsourced geographic information, in order for this material to be of value it is crucial that it be trusted. A semantic assessment of a feature’s attributes against ontologies representative of features likely to reside in this location provides an indication of how likely it is that the information submitted actually represents what is on the ground. This trust rating can then be incorporated into provenance information to provide users of the dataset an indication of each feature’s likely accuracy. Further to this, querying of provenance information can identify the features with the highest/lowest trust rating at a point in time. This presentation uses crowdsourced data detailing the location of fruit trees as a case study to demonstrate these concepts. Submissions of such crowdsourced information – by way of, say, an OpenLayers frontend – allow for the collection of both coordinate and attribute data. The location data indicates the relevant ontologies – able to be developed in Protégé – that describe the fruit trees likely to be encountered. If the fruit name associate with a submitted feature is not found in this area (e.g. a coconut tree in Alaska) then, by way of this model, the feature is determined to be inaccurate and given a low trust rating. Note that the model does not deem the information wrong or erase it, simply unlikely to be correct and deemed to be of questionable trust. The process continues by comparing submitted attribute data with the information describing the type of fruit tree – such as height – that is contained in the relevant ontologies. After this assessment of how well the submitted feature “fits” with its location the assigned trust rating is added to the feature’s provenance information via a semantic provenance model (akin to the W3C’s OPM). Use of such semantic web technologies then allows for querying to identify lower quality (less trustworthy) features and the reasons for their uncertainty (whether it be an issue with collection – such as not enough attribute data being recorded; time since collection – given degradation of data quality over time, i.e. older features are likely less accurate than newer ones; or because of a major event that could physically alter/remove the actual element, like a storm or earthquake). The tendency for crowdsourced datasets to be continually updated and amended means they are effectively dynamic when compared to more traditional datasets that are generally fixed to a set period/point in time. This requires them to be easily updated; however, it is important that efforts are directed at identifying and strengthening the features which represent the weakest links in the dataset. This is achievable through the use of opensource software and methods detailed in this presentation.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:00 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Image Geocoding as a Service

Driven by the ambition of a global geocoding solution, in this paper we present the architecture of an image geocoding service. It takes advantage of the ubiquity of cameras, that are present in almost all smartphones. It is an inexpensive sensor yet powerful, that can be used to provide precise location and orientation. This geocoding service provides an API similar to existing ones for place names and addresses, like Google Geocoding API. Instead of a text based query, images can be submitted to estimate the location and orientation of the user. Developers can use this new API, keeping almost all the existing code already used for other geocoding APIs. Behind the scenes, image features are extracted from the submitted photograph, and compared against a huge database of georeferenced models. These models were constructed using structure from motion (SFM) techniques, and heavily reduced to a representative set of all information using Synthetic Views. Our preliminary results shows that the pose estimation of the majority of the images submitted to our geocoding was successfully computed (more than 60%) with the mean positional error around 2 meters. With this service, an inexpensive outdoor/indoor location service can be provided, for example, for urban environments, where GPS fails.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
32:29 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Magical PostGIS in three brief movements

Everyone knows you can query a bounding box or even spatially join tables in PostGIS, but what about more advanced magic? This short symphony of PostGIS examples will look at using advanced features of PostGIS and PostgreSQL to accomplish surprising results: * Using full text search to build a spatially interactive web form. * Using raster functionality to look into the future. * Using standard PostgreSQL features to track and visualize versioning in data. PostGIS is a powerful tool on it's own, but combined with the features of PostgreSQL, it is almost magical.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:13 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Advanced Security with GeoServer and GeoFence

The presentation will provide an introduction to GeoServer own authentication and authorization subsystems. We’ll cover the supported authentication protocols, such as from basic/digest authentication and CAS support, check through the various identity providers, such as local config files, database tables and LDAP servers, and how it’s possible to combine the various bits in a single comprehensive authentication tool, as well as providing examples of custom authentication plugins for GeoServer, integrating it in a home grown security architecture. We’ll then move on to authorization, describing the GeoServer pluggable authorization mechanism and comparing it with proxy based solution, and check the built in service and data security system, reviewing its benefits and limitations. Finally we’ll explore the advanced authentication provider, GeoFence, explore the levels on integration with GeoSErver, from the simple and seamless direct integration to the more sophisticated external setup, and see how it can provide GeoServer with complex authorization rules over data and OGC services, taking into account the current user, OGC request and requested layers to enforce spatial filters and alphanumeric filters, attribute selection as well as cropping raster data to areas of interest.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
32:27 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Towards GeoExt 3 – Supporting both OpenLayers 3 and ExtJS 6

GeoExt (http://geoext.github.io/geoext2/) is Open Source and enables building desktop-like GIS applications through the web. It is a JavaScript framework that combines the GIS functionality of OpenLayers with the user interface savvy, rich data-package and architectural concepts of the ExtJS library provided by Sencha. Version 2.1 of GeoExt (currently in alpha-status) is the successor to the GeoExt 1.x-series and brought support for ExtJS 5 and is built atop the following installments of its base libraries: OpenLayers 2.13.1 and ExtJS 5.1.0 (or ExtJS 4.2.1 at your choice). The next version of GeoExt (v3.0.0?) will support OpenLayers 3 and the new and shiny ExtJS 6 (not finally released at the time of this writing). The talk will focus on the following aspects: * Introduction into GeoExt * New features in OpenLayers 3 and ExtJS 6 and how they can be used in GeoExt * The road towards GeoExt 3 * Results of the planned Code Sprint in June (see https://github.com/geoext/geoext3/wiki/GeoExt-3-Codesprint) * Remaining tasks and outlook The new features of OpenLayers (e.g. WebGL-support, rotated views, smaller build sizes, etc.) and Ext JS 6 (Unified code base for mobile and desktop while providing all functionality of ExtJS 5) and the description of the current state of this next major release will be highlighted in the talk. Online version of the presentation: http://marcjansen.github.io/foss4g-2015/Towards-GeoExt-3-Supporting-both-OpenLayers-3-and-ExtJS-6.html#/
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
31:05 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

OSGeo and LocationTech Comparison

We have two great organizations supporting our Free and Open Source Software for Geospatial: The Open Source Geospatial Foundation and LocationTech. Putting on events like FOSS4G is primary responsibility of these software foundations - supporting our great open source software is! This talk will introduce OSGeo and LocationTech, and balance the tricky topic of comparison for those interested in what each organisation offers. We will also look at areas where these organizations are collaboration and explore possibilities for future work. Each of these software foundations support for their existing projects, ranging from "release parties" such as OSGeo Live or the Eclipse Annual Release. We are also interested in the ��incubation�� process each provides to onboard new projects. Review of the incubation provides an insight into an organization's priorities. This talks draws the incubation experience of: * GeoServer (OSGeo), GeoTools (OSGeo), * GeoGig (LocationTech), uDig (LocationTech) If you are an open source developer interested in joining a foundation we will cover some of the resource, marking and infrastructure benefits that may be a factor for consideration. We will also looking into some of the long term benefits a software foundation provides both you and importantly users of your software. If you are a team members faced with the difficult choice of selecting open source technologies this talk can help. We can learn a lot about the risks associated with open source based on how each foundation seeks to protect you. The factors a software foundation considers for its projects provide useful criteria you can use to evaluate any projects.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:21 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

High-precision open lidar data enable new possibilities for spatial analysis in the canton of Zurich/Switzerland

The department of geoinformation of the canton of Zurich/Switzerland has carried out a high-resolution laser scanning (LIDAR) last year over the entire canton of Zurich. The extensive data (8 pts / m2) have now been evaluated, and a digital surface (DSM) and terrain model (DTM) created (dot grid of 50 cm and horizonal and vertical accuracies of 20 cm, resp. 10 cm. This is the first time high-resolution elevation data is widely available for the entire canton of Zurich. In the past, lidar data have been collected only for small-scale projects. As a novelty, the department has decided to provide the lidar data and its derived products, i.e. DTM and DSM, as open data to the public. With this decision new standards are set not only in terms of accuracy and scope, but also in the usage as open government data. The lidar data can provide valuable support for example in the areas of infrastructure, urban planning, regional planning, natural hazard assessment, forestry, environment, energy, line survey, solar potential analysis, surveying, archeology, agriculture, water or noise. Due to the planned repetition cycle of four years even time series and monitoring projects are possible. Therefore it is not surprising, that since the opening as open data, many interesting applications using this data have been created. The presentation will show the high-resolution data and its possible usage for terrain-visualizations. A selection of the most appealing visualizations will be demonstrated, e.g. an Oculus Rift version enabling the user to navigate through virtual reality. It will further give an insight in the challenge of opening up the LIDAR?data for the public, i.e. setting up an open-data strategy in the cantonal administration of Zurich.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:15 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Using the latest ISO standard for geographic information (ISO19115-1:2014)

Release in April 2014, this talk will introduce the major changes of the new standard for metadata on geographic information and what are the benefits for the data managers. It will be illustrated by its implementation in the latest GeoNetwork 3 version and with examples on how the Wallonia Region in Belgium migrated to it.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
14:05 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

triple-A for the environment: make IT simply better

triple-A for the environment: make IT simply better With the new Dutch Environment Act, the legal framework for development and maintenance of the physical environment becomes more understandable and manageable for citizens, businesses and governments. A simpler and more coherent environmental law contributes to work actively and efficiently on a dynamic and sustainable environment. This entire exercise of harmonization, reduction and integration is headed by the motto “Simply better”. In addition to the merging several dozen laws and regulations in one Environment Act (http://www.omgevingswet.nl), also the central IT office where citizens can apply for a environmental permit is further improved. This should make it easier to obtain a permit for example for a construction or business activity. The information presented in this central IT office must fulfill the triple-A requirements, i.e. Accessible, Applicable and Abiding. On the basis of this is a national system of open (geo)data registers of which the data acquisition and management is mandated to (semi-)government organizations. On each area of environmental law, a domain expert is appointed; stakeholders of each domain are metaphorically organized in an ”information house”, and all houses are situated metaphorically along “the avenue of the environment”. Goal of the improved central IT office is to provide a clear understanding of the relevant legislation and to allow each actor in the process to work with the same data and definitions. Therefore, we developed a prototype which presents a concept of linking data, definitions and regulations stored in one central register using an online mapping service as user interface. Using Linked Data as strategy with persistent URIs, we are able to link the concepts in this register to an end-user prototype application. We implemented an prototype for the question: “Do I need an environmental permit for… applying a change in business activity?“. An air quality impact assessment is computed based on user input an visualized in a map interface showing the effects of an increase of nitrogen emission on the nearby nature reserves after extending a greenhouse farming. We used the AERIUS calculation tool (http://www.aerius.nl/) of the National Institute for Public Health and the Environment and presented the returned geodata as GeoJSON in the Leaflet Map API (http://www.leaflet.org). With this prototype, we provide a concept which facilitates the clear understanding of the requirements for an environmental permit by making IT simply better.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:21 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

GeoCouch: Operating multidimensional data at scale with Couchbase

Couchbase is a distributed document-oriented NoSQL database. You store the data as JSON and then build indexes with simple JavaScript functions. This talk is about the multidimensional index capability of Couchbase. This means you can index not only geographic data (encoded as GeoJSON) but any additional numeric attributes you like. Such a multidimensional query might be used for an application about car sharing. You would e.g. query for all the cars in a certain area, but you're also interested in additional attributes. Let's say you want to display only cars where at least four people fit in. Or you want one with air-conditioning. Such attributes would be the additional dimensions. In this case it would be 4-dimensional query, two for the location and two for additional attributes. Quite often GeoHash is used for implementing a spatial index, which has some limitations. A notable one is that you need to know that maximum range of your data upfront as it's a space partitioning algorithm. It is good enough for purely geospatial data, but as soon as additinal attributes like time are needed, it might become an issue. GeoCouch takes a more traditional approach like PostGIS and uses an R-tree which is data partitioning, hence you don't need to know the extent up-front. Another focus of this talk will be on the operational strengths Couchbase has. One thing is the web interface that makes administrating clusters very easy, even when there's a failure. The other thing is that you can easily restart servers, e.g. when a Linux Kernel upgrade is due, without any downtime on the full cluster. The system stays operational and handles those upgrades gracefully. In the end you will have a good overview on why you really want to use a multidimensional indexing for your remote sensing data or points of interest in your location aware mobile app. GeoCouch is fully integrated into Couchbase, there's no additional setup needed to get started. All source code from Couchbase is licensed under the Apache 2.0 License. Links: - Couchbase: http://www.couchbase.com/ - Source code: https://github.com/couchbase/manifest - GeoCouch: https://github.com/couchbase/geocouch
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:02 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Fast Cache, Fresh data. Can we have it all?

  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
23:44 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

CartoDB Basemaps: a tale of data, tiles, and dark matter sandwiches

CartoDB is an open souce tool and SaaS platform that allows users to make beautiful maps quickly and easily from their own data. To complement our users needs, we launched last year our free-to-use open source OSM based basemaps Positron and Dark Matter (https://github.com/CartoDB/CartoDB-basemaps), designed in collaboration with Stamen to complement data visualization. While architecturing them, we had several compromises in mind: they had to be powered by our existing infrastructure (powered by Mapnik and PostGIS at its core), they had to be scalable, cacheable but frequently updated, customizable, match with data overlays, and, last but not least, they had to be beautiful. This talk is the tale of the development process and tools we used, how we implemented and deployed them and the technology challenges that arose during the process of adapting a dynamic mapping infrastructure as CartoDB to the data scale of OSM, including styling, caching, and scalability, and how (we think) we achieved most of those. I will also talk about the future improvements that we are exploring about mixing the combination of basemap rendering with data from other sources, and how you can replicate and tweak those maps on your own infrastructure.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:13 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Geodata for Everyone - Model-driven development and an example of INSPIRE WFS service

In denmark the public authorities register various core information about individuals, businesses, real properties, buildings, addresses, ect.. This information is re-used throughout the public sector. It is a challenge for public authorities to re-use data from different providers to perform their tasks properly and efficiently across units, administrations and sectors. Therefore all the authoritative basic data should be defined and standardized according to the same methods. Danish Geodata agency as Denmark's central public source of geographic data has established a set of guidelines for future modelling of spatial data for distributing them as open geographic data. Based on the guidelines a model-driven process has also been established. It starts from the data modelling in UML to the end where data are distributed through WFS services and download services. One INSPIRE WFS service will be used as a concrete example.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:46 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Use case of a dual open strategy in the canton of Zurich/Switzerland

With a dual 'open'-strategy the department of geoinformation at the canton of Zurich/Switzerland opts for a strategic orientation towards open source and open data: Open in the sense of an open web-mapping- infrastructure based on open source components: Mapfish Appserver was developed as a framework for building web map applications using OGC standards and the Mapfish REST protocol. It is freely available under the new BSD-license (http://mapfish-appserver.github.io/). The Ruby on Rails gem comes with the following out-of-the box features: - Organize maps by topics, categories, organisational units, keywords and more - Combine maps with background and overlay topics with adjustable opacity - Import UMN Mapserver mapfiles to publish new topics within seconds - Fully customizable legends and feature infos - Creation of complex custom searches - Rich digitizing and editing functionality - Role-based access control on topic, layer and attribute level - Access control for WMS and WFS - Rich library of ExtJS 4 based map components - Multiple customizable viewers from minimal mobile viewer to full featured portal - Multi-site support - Built-in administration backend - Self-organized user groups maps.zh.ch, the official geodata-viewer of the canton of Zurich, was developed using Mapfish Appserver. It contains more than 100 thematic maps and is considered an indispensable working tool for everyone working with spatial data in the canton of Z?rich/Switzerland. 'Open' in the sense of Open Government Data: Zurich is the first canton participating in the national open data portal opendata.admin.ch. The portal has the function of a central, national directory of open data from different backgrounds and themes. This makes it easier to find and use appropriate data for further projects. The department of geoinformatics aims to open as many geo-datasets as possible for the public by publishing them on the national OGD-portal. The open geodata is issued in form of web services ? Web Map Services (WMS), WebFeature Services (WFS) and Web Coverage Services (WCS) - and contains a wide range of geodata from the fields of nature conservation, forestry, engineering, infrastructure planning, statistics to high resolution LIDAR-data.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:48 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Sensor up your connected applications with OGC SensorThings API

This introduction will give an introduction and live demonstration of the OGC SensorThings API. The OGC SensorThings API provides an open and unified way to interconnect the Internet of Things (IoT) devices, data, and applications over the Web. The OGC SensorThings API is a new OGC standard candidate. Unlike many existing OGC standards, SensorThings API is very simple and efficient. At the same time, it is also comprehensive and designed to handle complex use cases. It builds on a rich set of proven-working and widely-adopted open standards, such as the OGC Sensor Web Enablement (SWE) standards, including the ISO/OGC Observation and Measurement (O&M) and Sensor Observation Services (SOS). The main difference between the SensorThings API and the OGC SOS is that the SensorThings API is designed specifically for the resource-constrained IoT devices and the Web developer community. As a result, the SensorThings API follows the REST principles, the use of an efficient JSON encoding, and the use of the flexible OASIS OData protocol and URL conventions. In addition to introduce the specification, this talk will also demonstrate an end-to-end IoT application based on the SensorUp IoT platform, an open source implementation of the SensorThings API, including a server, javascript library, web dashboard and a Arduino library.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:10 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

GIS-modelling of long-term consequences after a nuclear accident.

In order to evaluate consequences of deposited radioactive cesium (and other radioactive substances) in natural systems a GIS based model called Stratos has been developed. This model incorporates information regarding deposition, transfer to vegetation and animals, intervention levels and geographical distribution of animals. The presentation will use a case study which describes the possible environmental consequences for Norway due to a hypothetical accident at the Sellafield complex in the UK. The scenario considered involves an explosion and fire at the B215 facility resulting in a 1 % release of the total HAL 1 inventory of radioactive waste with a subsequent air transport and deposition in Norway. Air transport modeling is based on real meteorological data from October 2008 with wind direction towards Norway and heavy precipitation. This weather is considered to be quite representative as typical seasonal weather. Based on this weather scenario, the estimated fallout in Norway will be ~17 PBq of cesium-137 which is 7 times higher than fallout after the Chernobyl accident. The modeled radioactive contamination is linked with data on transfer to the food chain and statistics on production and hunting to assess the consequences for foodstuffs. The investigation has been limited to the terrestrial environment, focusing on wild berries, fungi, and animals grazing unimproved pastures (i.e. various types of game, reindeer, sheep and goats). The results of a model-run are maps for the chosen products, with categorized colors - giving the degree of consequences. A linked text file gives relevant numeric values for each color. The Stratos model is written in python which calls GRASS-functions and uses as gui for model setup. The model has been used for two reports at the Norwegian Radiation Protection Authority, and is currently being used and developed further in the "Centre for Environmental Radioactivity" (CERAD), cerad.nmbu.no.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:20 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Case study: A full-fledged cutting-edge FOSS4G map production system

The development and the usage of National Land Survey of Finland's dynamic and high performance map production system is described in this presentation. The system is currently in use and serves map images both to customers and to NLSFI production systems. The data in the map production system are open data and being updated on a weekly basis. When the data get updated, a RSS-feed is generated. Based on the feed, the map products are updated. Data is stored, updated and replicated in PostGIS. Map pictures are rendered in GeoServer. The visualization of the maps is based on SLD-stylesheets. SLD-stylesheets enable the same data to be visualized in several different ways. GeoServer in conjunction with SLD-stylesheets offers a Web Map Service (WMS). Map images are delivered via a high performance MapCache Web Map Tile Service (WMTS) and as image files via NLSFI download service. The system is designed to be expandable and is currently being further developed to enable the pro-duction of on-demand printed maps.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:14 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Open Source for Handling IndoorGML

In order to respond to increasing demand for indoor spatial information, an OGC standard called IndoorGML, has been recently published. It is an application schema of GML and based on the cellular space model, which represents an indoor space as a set of cells with their geometric, topological, and semantic attributes. Since we are at a beginning stage, very few tools supporting IndoorGML have been developed. In our talk, we will present an open source tool that we have been developing to provide a translating function between IndoorGML and other data formats. For example, it offers a Java package with a set of classes for indoorGML, called JavaIndoorGML. Once IndoorGML documents are mapped to Java instances of classes in JavaIndorGML, we are able to handle indoor spatial information with ease.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:27 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Decision-making system for grants for maintaning services in rural areas

Sweden is a sparsely populated country. Normally market forces would regulate the number and location of both public and commercial services as schools, medical care, grocery stores and pharmacies. In sparsely populated areas these forces does not work. The Swedish government has realized this and gives economical support to some services in order to maintain or in some cases expand the service level. The aim with this grants is to provide conditions for living, working and contribute to economic growth in these in remote areas. To be as effective as possible a decision making system has been developed to support the administrators of the grant. The system allows the administrators to monitor the current situation, update changes in the service structure and simulate fictive scenarios. The system is built on an open source platform and is available through the internet to authorized administrators on the regional level of the Swedish administration. As platform for the system the following open source projects and formats are used GeoExt, Ext JS, Openlayers, Mapfish, Pylons, GEOAlchemy, Mapserver, PostGIS, GeoJSON.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

OpenDroneMap, Next Steps: Toward optimization and better 3D modeling

OpenDroneMap is an open source toolkit for processing drone imagery. From raw imagery input, it outputs a georeferenced pointcloud, mesh, and orthophoto. This is a powerful toolkit to change unreferenced arbitrary images into geographic data. Next steps in the project are needed to improve optimization of underlying algorithms, steps to better create meshes / textured meshes from the resultant pointclouds by explicitly modeling surfaces, and to make better output data from lower quality inputs. Come and see where the project is at, how the state of the art is advancing, and how you can use it and contribute.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:21 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

OGC GeoPackage in practice: Implementing a new OGC specification with open-source tools

GeoPackage is a new encoding standard created by the Open Geospatial Consortium as a modern alternative to formats like SDTS and Shapefile. Using SQLite, the single-file relational database can hold raster imagery, vector features and metadata. GeoPackage is an ideal data container for mobile devices such as smartphones, IoT devices, wearables, and even automobiles. We have created a few open-source tools to manipulate this exciting technology in a way that is useful to the geospatial community. Our goal with the GeoPackage specification implementations is simple: Create GeoPackages quickly and reliably while maintaining standard conformance. The single biggest issue we have faced is the speed in which large amounts of imagery can be disseminated to the end user. Data standards reliability was also a concern because we found many vendors interpreted the specification differently or to suite their own needs. Finally, the main problem GeoPackage was created was to solve was interoperability. We set out to create an implementation that would guide other parties towards making a data product that would function as well on one platform as it would on a completely different platform. Our initial implementation of the GeoPackage specification was created using Python 2.7.x. The software design was intended for command line use only in a script-friendly environment where tiling speed was paramount. The Gdal2tiles.py script was improved upon by harnessing the Python multiprocessing library so that multiple tile jobs could run simultaneously. The other piece of the workflow, creating GeoPackages, would be a separate development effort from scratch called tiles2gpkg parallel.py. In tiles2gpkg parallel.py, we implemented multiprocessing by writing to separate SQLite databases in parallel and then merging the tiled data sets into one compact database. This implementation worked well and increased the performance of producing these data sets; however, the command line design means that all but the most technically adept users would struggle to use the tools. With the initial Python implementation getting early-adopters a preview of GeoPackage in the short term, our team set out to make a production-quality GeoPackage API that could satisfy all user needs. Named Software to Aggregate Geospatial Data or SWAGD, we created a robust library for tiling raster data, packaging raster data stores into GeoPackages, and viewing either the raw tiles OR the finished GeoPackage products within a map viewer. Additionally, a Geopackage verification tool was created to foster community adoption. For more information, see our Github site here: https://github.com/GitHubRGI/swagd. Many open-source tools are being leveraged on the SWAGD project, including many common build and continuous integration tools including Github, TravisCI, WaffleIO, and Coverity. Using proven software development mechanisms like unit testing and code reviews we now have a consistent, reproducible, and inclusive GeoPackage implementation. We have an aggressive list of future capability that we would like to develop including ad-hoc routing on a mobile device, vector tile data sets, and even 3D support.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:36 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

On simulation and GIS, coupling and hydrology

This presentation shows how to better integrate simulation codes and Geographical Information Systems, and takes the example of Hydrological modelling integration into QGIS. Scientific modelling and simulations are present in a large number of areas. A significant proportion of simulation codes are applied spatially, at different levels, from a neighborhood scale up to worldwide areas. These simulation codes take spatial information as input data, and output results which are related to space too. But most of the time, they do not directly handle GIS data. Data types and data formats are different, and there is therefore a lot of effort to put into pre-processing and post-processing of the data to get it from GIS to the simulation codes and back. For example, determining the diffusion of a pollutant leak into underground water necessitates to get a DEM, location of the leak, geological data and more from the GIS, and transform it to simulation code input format. Then launch a simulation (on finite volumes e.g.), and convert the output into GIS files so that to be able to visualize spatial repartition of the pollutant according to time. The topic of this presentation is therefore to show how to better interact between simulation and GIS. We present the prevalent types of data for simulation, how they differ from GIS, and how we usually transfer from one type to another. Then we show how we worked towards better integration. Polygonal meshes are the most common way of representing 2D geometries for simulation purposes. Integrating simulation to a GIS requires storing georeferenced meshes in a databases (or using standard GIS file formats), and being able to use simulation values interpolated over the elements as a map layer. We show how to modify simulation codes to read directly a mesh from a GIS and write the results into a GIS. We implemented a new type of layer for QGIS, a mesh layer, which enables to display simulation results with high performances. This takes into account the temporal dimension. We also demonstrate how to integrate a simulation code into QGIS Processing so that it can be managed directly from within the desktop application. We illustrate these concepts with a demonstration of a full integration of a Hydrological simulation tool inside QGIS, with simulation management, custom user interface and strong integration of data between the simulation code and GIS data. In this sense the FREEWAT project started mid-2015, which aims at integrating multiple Hydrological codes into QGIS is also a good example of simulation and GIS integration. We end up with the perspectives for more global integration of simulation tools and GIS, and the work still to be done to bridge the gap between those two worlds.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:51 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Taking dynamic web mapping to 1:100000 scale

CartoDB is growing to be one of the biggest mapping platform for the masses, being powered by a fully open-source stack, with PostgreSQL, PostGIS, Mapnik and Leaflet at its core. Our aim is to democratize map and geographical data visualization, making it easy for non-GIS people to create simple maps using the CartoDB Editor, but still keeping all the power and flexibility of the underlying components available to advanced users, with a variety of building blocks ranging from the frontend with CartoDB.js and Torque to the backend with the Map, SQL and Import API, parts of what we call the CartoDB Platform. Serving dozens of millions of map tiles daily has its own set of problems, but when they are being created by hundreds of thousands of users (which have their own database and can alter everything from styling, to the data sources and the SQL queries applied) everything turns out to be a big source of challenges, both development and operationally speaking. This talk will go through our general architecture, some of the decisions we’ve had to take, the things we’ve learned and the problems we’ve had to tackle through the way of getting CartoDB to scale at our level of growth, and how we're giving back to the community what we've discovered though the process.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
21:12 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

MapCache: Fast and Featureful tile serving from the MapServer project

MapCache is a tiling server component designed to be efficient while still comprising all the features expected from a modern tiling solution. This presentation will give a brief presentation of the MapCache tiling solution, along with the recent developments that were added to reply to the needs of large scale installations (cache replication, load balancing, failsafe/fallback operations, large cache management, etc...)
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:50 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

WPS Benchmarking Session

The yearly Web Processing Service (WPS) benchmark. Variuos WPS implementations will be tested regarding their capabilities, compliancy to the standard and performance. Traditionally, each participating project designates individuals from their community to participate in this talk to introduce their project and summarize its key features. The focus this year will be on compliancy and interoperability. We will present the test set-up, participating WPS projects and the results of the benchmark.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
25:04 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

How can the students get Geospatial Information and make a map by using the FOSS4G.

We propose one of the practical case that the students are able to handle Geospatial Information and to make a map by using the FOSS4G. In recent years, the informatization of education is progressing in Japan. Its aim is to distribute one information device per one child in 2020 by informatization of education. However, it is not easy to implement the information device as the educational method. It is the same situation with respect to geographic information technology for education. From such a background, we founded the NPO in order to help the school by using a geographic information technology in 2011. We have carried out some of technical workshops for teachers, development of GIS teaching materials, and the provision of curriculum. Especially it is important to use geographic information technologies in geographical and historical education. In the classroom of geography and history, students can understand with realistic by using the GIS teaching materials. Therefore, we provide the teaching materials created by GIS for teachers or students. GIS can develop the teaching materials to maximize the imagination of students. Mainly, we have been using QGIS in the development of teaching materials. The KML file is an output from QGIS. The method is to provide database system in web by KML file materials. The name is OpenTextMap. The FOSS4G have been effective in this activity. Our goal in this talk is to share the educational practice by FOSS4G to other people.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
10:26 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Keynote speech - Geospatial Information for the UN Secretaiat and Peace Operations

  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:50 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Push it through the wire! Push it more, if it's wireless!

Today's web browsers, their rendering engines and JavaScript interpreters are able to display relatively big amounts of vector data. Moving from DOM rendering (as it was implemented with help of SVG in for examples OpenLayers 2) to Canvas (and further to WebGL -- as we are now having in OpenLayers 3 or Leaflet) enables us to display thousands of complex vector features, with complicated on-client vector data styling. With this possibility, we are facing now new types problems: how to send such amount of data through limited internet connection? If we have closer look at the problem, we can see clearly, that old database paradigm has raised one more time: we can not have all three attributes of data in one pot, but only 2 of them: speed of the delivered data or amount of delivered data or their topicality. If we take this limits into account and decide to deal with big amounts of data in fast way, topicality must be sacrificed. In the talk, we will demonstrate some possible solutions for this problem, using tiled vectors, generalization, aggregation of vector data. Also advantages, disadvantages of various new and popular vector formats, such as GeoJSON, TopoJSON or MapBox will be discussed. Geometric data do not have be rendered all the time in all scales and over whole area of interest, but only necessary portion of them. If displayed in smaller scales, aggregation and generalisation can take place on the server side. That implies, that using vector caching mechanism could be considered as well. But if we need direct interaction of the server input with cached vector data, mechanism for this must be defined as well. Also attribute data have to be transfered separately, if all the optimisation was put in the vector geometries. Also possible steps between cached data and real-time data will be discussed.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
15:09 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

An open source GIS application for scientific national park management

This presentation introduces application cases of open source GIS for scientific national park management in Korea. Korea National Park Service (KNPS) is a public organization that manages almost all domestic national parks. GIS is a core technology for the park management, but the cost of commercial software had been limited the diffusion of GIS. Now, park rangers of KNPS are using QGIS that is a representative open source geospatial software, and they make themselves various GIS and remote sensing-based maps. For this, KNPS launched a QGIS education program for employee training. As a result, they started making maps using QGIS and many useful plugins, including Animove for QGIS, Semi-Automatic Classification Plugin (SCP), and Oceancolor Data Downloader. A variety of natural resources maps can be made from GPS field data, and time-series satellite images can be processed into climate change effect maps such as forest health, sea surface temperature (SST). Moreover, a graphical modeler feature of QGIS enables an automatic data processing. The Drone Flight Simulator called Park Air System, is also being developed using open source geospatial libraries. Using QGIS, KNPS makes all geospatial data like a trail, facility, and natural resources and is opening to the public freely. KNPS won the President's Prize in 2014 for the hard work.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
24:22 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Jsonix: Talking to OGC Web Services in JSON

Can you talk to OGC Web Services in JSON instead of XML? You can - with Jsonix, a powerful JavaScript tool for XML - JSON conversion. JSON has probably already replaced XML as a "lingua franca". JSON is much lighter and easier to use than XML, especially in JavaScript-based web apps. In the context of GIS, web mapping is dominated by JavaScript libraries like OpenLayers and Leaflet, which speak JSON natively. But what about the standards? Open Geospatial Consortium defines more than 50 specifications with more than 100 individual versions. Technically almost all of them are XML-based and defined by XML schemas. These are de jure and de facto standards, widely used and well supported. So you still need XML processing in JS web mapping apps. Processing XML is no rocket science, but it's seldom a pleasure to implement. The OL3 KML parser is about 2.5KLoc of dense XML parsing. Even a very simple WMS GetCapabilities format is almost 1 KLOC. From this code around 90% is pure XML parsing and only 10% is the processing of the payload. Would not it be nice if we could talk to the OGC Web Services directly in JSON? So that the developers could focus on the 10%, the payload processing, and cut off the 90% (XML handling) of the effort. Jsonix is an open source library for XML - JS conversion which makes it just possible. With Jsonix you can take an XML Schema and generate XML - JS mappings. These mappings allow you to parse XML in the original schema and get your data in pretty JSON. It also works in the opposite direction: you can serialize JSON in XML, which would correspond to the original XML Schema. What makes Jsonix unique is that it is type and structure-safe. On the JSON side, you will get types and structures exactly as they are defined in the original XML Schema. For instance, xs:decimal is converted into a number in number in JSON, repeatable elements are represented by arrays etc. You just need the corresponding mapping. You can generate Jsonix mappings on your own or use one of the pre-generated mappings. The (unofficial) OGC Schemas Project compiles and provides mappings for many of the popular OGC schemas (OWS, WMS, WFS, CSW, SLD and many more). This presentation gives an overview of Jsonix demonstrates its usage by a number of examples.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
13:04 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Ocean data Interpolation using Open Source GIS

Using the data of the Republic of Korea Marine waters around introduce a data visualization method through interpolation.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
19:55 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

State of GeoServer

State of GeoServer reviewing the new and noteworthy features introduced in the past year. The project has an aggressive six month release cycle with GeoServer 2.7 and 2.8 being released this year. These releases bring together exciting new features. A lot of work has been done on processing services with clustering, security and processing control. The rendering engine continues to improve with the addition of color blending opening up a range of creative possibilities. The CSS extension (used to easily generate OGC standard styles) has been cleaned up with a rewrite. This talk will highlighted updates on data import, application schema use, data transforms and the latest from the developer list. Attend this talk for a cheerful update on what is happening with this popular OSGeo project. Whether you are an expert user, a developer, or simply curious what these projects can do for you, this talk is for you.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
26:17 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

PostGIS Feature Frenzy

What can you do with this PostGIS thing? This talk covers some basic and not��so��basic ways to use PostGIS/PostgreSQL to process spatial data, to build infrastructures, and to do crazy things with data. PostGIS has over 300 functions, which in turn can be used with the many features of the underlying PostgreSQL database. This talk covers some basic and not��so��basic ways to use PostGIS/PostgreSQL to process spatial data, to build infrastructures, and to do crazy things with data. Consider the possibilities: raster, topology, linear referencing, history tracking, web services, overlays, unions, joins, constraints, replication, json, xml, and more!
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
22:23 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Use case of Disaster Management System by using Geopaparazzi and MapGuide Open Source

In recent years, large-scale disasters have occurred in the countries of Asia including Japan, rapid collection and sharing of disaster information is required in order to provide relief and support speedy restoration of civic services. This presentation discusses the integration and customization of FOSS4G field survey tools and Web GIS server to facilitate aggregation and rapid sharing of disaster related field information. Further, the system also provide realtime interaction between field party and coordination team. A case study of practical use of the system at the Osaka Water General Service (OWGS) Corporation will be demonstrated to present the salient features of the system. The main capability of the system usability is normal as well as disaster situation will be highlighted.
  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
20:10 FOSS4G, Open Source Geospatial Foundation (OSGeo) English 2015

Future direction for using FOSS4G: Case of Managing Early warning Systems for Monitoring Natural Hazards in El Salvador

  • Published: 2015
  • Publisher: FOSS4G, Open Source Geospatial Foundation (OSGeo)
  • Language: English
out of 3 pages
Loading...
Feedback

Timings

  117 ms - page object
   84 ms - search
    3 ms - highlighting
    0 ms - highlighting/32167
    0 ms - highlighting/32142
    1 ms - highlighting/32104
    1 ms - highlighting/32094
    1 ms - highlighting/32134
    0 ms - highlighting/32140
    1 ms - highlighting/32130
    0 ms - highlighting/32088
    0 ms - highlighting/32079
    1 ms - highlighting/32083
    0 ms - highlighting/32131
    1 ms - highlighting/32158
    1 ms - highlighting/32099
    1 ms - highlighting/32109
    1 ms - highlighting/32127
    1 ms - highlighting/32097
    1 ms - highlighting/32101
    1 ms - highlighting/32166
    1 ms - highlighting/32152
    1 ms - highlighting/32135
    1 ms - highlighting/32156
    1 ms - highlighting/32124
    2 ms - highlighting/32162
    1 ms - highlighting/32080
    0 ms - highlighting/32100
    1 ms - highlighting/32129
    1 ms - highlighting/32102
    1 ms - highlighting/32133
    0 ms - highlighting/32069
    1 ms - highlighting/32095
    1 ms - highlighting/32105
    1 ms - highlighting/32087
    1 ms - highlighting/32117
    0 ms - highlighting/32077
    1 ms - highlighting/32098
    0 ms - highlighting/32111

Version

AV-Portal 3.7.0 (943df4b4639bec127ddc6b93adb0c7d8d995f77c)