Show filters Hide filters

Refine your search

Publication Year
1-36 out of 57 results
Change view
  • Sort by:
1:07:34 Institute of Physics (IOP) English 2011

Manipulating Graphene at the Atomic Scale

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:00:07 Institute of Physics (IOP) English 2011

Graphene and hexa-BN Heterostructures

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:04:10 Institute of Physics (IOP) English 2011

Graphene based Electronics and Optoelectronics

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:18:31 Institute of Physics (IOP) English 2011

Electronic Properties of Bilayer Graphene, from High to Low Energies

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:18:00 Institute of Physics (IOP) English 2011

Raman Spectra of Graphene and Carbon Nanotubes

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
51:23 Institute of Physics (IOP) English 2011

Chiral Electrons and Zero-Mode Anomalies in Graphene

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:01:25 Institute of Physics (IOP) English 2011

Graphene Update

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:03 Institute of Physics (IOP) English 2013

Bioenergy: how much can we expect for 2050?

Estimates of global primary bioenergy potentials in the literature span almost three orders of magnitude. We narrow that range by discussing biophysical constraints on bioenergy potentials resulting from plant growth (NPP) and its current human use. In the last 30 years, terrestrial NPP was almost constant near 54 PgC yr−1, despite massive efforts to increase yields in agriculture and forestry. The global human appropriation of terrestrial plant production has doubled in the last century. We estimate the maximum physical potential of the world's total land area outside croplands, infrastructure, wilderness and denser forests to deliver bioenergy at approximately 190 EJ yr−1. These pasture lands, sparser woodlands, savannas and tundras are already used heavily for grazing and store abundant carbon; they would have to be entirely converted to bioenergy and intensive forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly double the global human biomass harvest, with far-reaching effects on biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and finding ways to integrate bioenergy with food supply and ecological conservation goals remains a huge and pressing scientific challenge.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:20 Institute of Physics (IOP) English 2018

Climate effects of non-compliant Volkswagen diesel cars

On-road operations of Volkswagen light-duty diesel vehicles equipped with defeat devices cause emissions of NOx up to 40 times above emission standards. Higher on-road NOx emissions are a widespread problem not limited to Volkswagen vehicles, but the Volkswagen violations brought this issue under the spotlight. While several studies investigated the health impacts of high NOx emissions, the climatic impacts have not been quantified. Here we show that such diesel cars generate a larger warming on the time scale of several years but a smaller warming on the decadal time scale during actual on-road operations than in vehicle certification tests. The difference in longer-term warming levels, however, depends on underlying driving conditions. Furthermore, in the presence of defeat devices, the climatic advantage of 'clean diesel' cars over gasoline cars, in terms of global-mean temperature change, is in our view not necessarily the case.
  • Published: 2018
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:17 Institute of Physics (IOP) English 2018

Feed conversion efficiency in aquaculture: do we measure it correctly?

Globally, demand for food animal products is rising. At the same time, we face mounting, related pressures including limited natural resources, negative environmental externalities, climate disruption, and population growth. Governments and other stakeholders are seeking strategies to boost food production efficiency and food system resiliency, and aquaculture (farmed seafood) is commonly viewed as having a major role in improving global food security based on longstanding measures of animal production efficiency. The most widely used measurement is called the 'feed conversion ratio' (FCR), which is the weight of feed administered over the lifetime of an animal divided by weight gained. By this measure, fed aquaculture and chickens are similarly efficient at converting feed into animal biomass, and both are more efficient compared to pigs and cattle. FCR does not account for differences in feed content, edible portion of an animal, or nutritional quality of the final product. Given these limitations, we searched the literature for alternative efficiency measures and identified 'nutrient retention', which can be used to compare protein and calories in feed (inputs) and edible portions of animals (outputs). Protein and calorie retention have not been calculated for most aquaculture species. Focusing on commercial production, we collected data on feed composition, feed conversion ratios, edible portions (i.e. yield), and nutritional content of edible flesh for nine aquatic and three terrestrial farmed animal species. We estimate that 19% of protein and 10% of calories in feed for aquatic species are ultimately made available in the human food supply, with significant variation between species. Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon. Despite lower FCRs in aquaculture, protein and calorie retention for aquaculture production is comparable to livestock production. This is, in part, due to farmed fish and shrimp requiring higher levels of protein and calories in feed compared to chickens, pigs, and cattle. Strategies to address global food security should consider these alternative efficiency measures.
  • Published: 2018
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:03 Institute of Physics (IOP) English 2017

Carbon tax effects on the poor: a SAM-based approach

A SAM-based price model for Mexico is developed in order to assess the effects of the carbon tax, which was part of the fiscal reform approved in 2014. The model is formulated based on a social accounting matrix (SAM) that distinguishes households by the official poverty condition and geographical area. The main results are that the sector that includes coke, refined petroleum and nuclear fuel shows the highest price increase due to the direct impact of the carbon tax; in addition, air transport and inland transport are the most affected sectors, in an indirect manner, because both employ inputs from the former sector. Also, it is found that welfare diminishes more in the rural strata than in the urban one. In the urban area, the carbon tax is regressive: the negative impact of carbon tax on family welfare is greater on the poorest families.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:21 Institute of Physics (IOP) English 2013

REDD+ readiness: early insights on monitoring, reporting and verification systems of project developers

A functional measuring, monitoring, reporting and verification (MRV) system is essential to assess the additionality and impact on forest carbon in REDD+ (reducing emissions from deforestation and degradation) projects. This study assesses the MRV capacity and readiness of project developers at 20 REDD+ projects in Brazil, Peru, Cameroon, Tanzania, Indonesia and Vietnam, using a questionnaire survey and field visits. Nineteen performance criteria with 76 indicators were formulated in three categories, and capacity was measured with respect to each category. Of the 20 projects, 11 were found to have very high or high overall MRV capacity and readiness. At the regional level, capacity and readiness tended to be highest in the projects in Brazil and Peru and somewhat lower in Cameroon, Tanzania, Indonesia and Vietnam. Although the MRV capacities of half the projects are high, there are capacity deficiencies in other projects that are a source of concern. These are not only due to limitations in technical expertise, but can also be attributed to the slowness of international REDD+ policy formulation and the unclear path of development of the forest carbon market. Based on the study results, priorities for MRV development and increased investment in readiness are proposed.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:24 Institute of Physics (IOP) English 2013

Strategic incentives for climate geoengineering coalitions to exclude broad participation

Solar geoengineering is the deliberate reduction in the absorption of incoming solar radiation by the Earth's climate system with the aim of reducing impacts of anthropogenic climate change. Climate model simulations project a diversity of regional outcomes that vary with the amount of solar geoengineering deployed. It is unlikely that a single small actor could implement and sustain global-scale geoengineering that harms much of the world without intervention from harmed world powers. However, a sufficiently powerful international coalition might be able to deploy solar geoengineering. Here, we show that regional differences in climate outcomes create strategic incentives to form coalitions that are as small as possible, while still powerful enough to deploy solar geoengineering. The characteristics of coalitions to geoengineer climate are modeled using a 'global thermostat setting game' based on climate model results. Coalition members have incentives to exclude non-members that would prevent implementation of solar geoengineering at a level that is optimal for the existing coalition. These incentives differ markedly from those that dominate international politics of greenhouse-gas emissions reduction, where the central challenge is to compel free riders to participate.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
05:35 Institute of Physics (IOP) English 2013

Land cover dynamics following a deforestation ban in northern Costa Rica

Forest protection policies potentially reduce deforestation and re-direct agricultural expansion to already-cleared areas. Using satellite imagery, we assessed whether deforestation for conversion to pasture and cropland decreased in the lowlands of northern Costa Rica following the 1996 ban on forest clearing, despite a tripling of area under pineapple cultivation in the last decade. We observed that following the ban, mature forest loss decreased from 2.2% to 1.2% per year, and the proportion of pineapple and other export-oriented cropland derived from mature forest declined from 16.4% to 1.9%. The post-ban expansion of pineapples and other crops largely replaced pasture, exotic and native tree plantations, and secondary forests. Overall, there was a small net gain in forest cover due to a shifting mosaic of regrowth and clearing in pastures, but cropland expansion decreased reforestation rates. We conclude that forest protection efforts in northern Costa Rica have likely slowed mature forest loss and succeeded in re-directing expansion of cropland to areas outside mature forest. Our results suggest that deforestation bans may protect mature forests better than older forest regrowth and may restrict clearing for large-scale crops more effectively than clearing for pasture.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:24 Institute of Physics (IOP) English 2018

Global predictability of temperature extremes

Extreme temperatures are one of the leading causes of death and disease in both developed and developing countries, and heat extremes are projected to rise in many regions. To reduce risk, heatwave plans and cold weather plans have been effectively implemented around the world. However, much of the world's population is not yet protected by such systems, including many data-scarce but also highly vulnerable regions. In this study, we assess at a global level where such systems have the potential to be effective at reducing risk from temperature extremes, characterizing (1) long-term average occurrence of heatwaves and coldwaves, (2) seasonality of these extremes, and (3) short-term predictability of these extreme events three to ten days in advance. Using both the NOAA and ECMWF weather forecast models, we develop global maps indicating a first approximation of the locations that are likely to benefit from the development of seasonal preparedness plans and/or short-term early warning systems for extreme temperature. The extratropics generally show both short-term skill as well as strong seasonality; in the tropics, most locations do also demonstrate one or both. In fact, almost 5 billion people live in regions that have seasonality and predictability of heatwaves and/or coldwaves. Climate adaptation investments in these regions can take advantage of seasonality and predictability to reduce risks to vulnerable populations.
  • Published: 2018
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:15 Institute of Physics (IOP) English 2018

Deconstructing climate misinformation to identify reasoning errors

Misinformation can have significant societal consequences. For example, misinformation about climate change has confused the public and stalled support for mitigation policies. When people lack the expertise and skill to evaluate the science behind a claim, they typically rely on heuristics such as substituting judgment about something complex (i.e. climate science) with judgment about something simple (i.e. the character of people who speak about climate science) and are therefore vulnerable to misleading information. Inoculation theory offers one approach to effectively neutralize the influence of misinformation. Typically, inoculations convey resistance by providing people with information that counters misinformation. In contrast, we propose inoculating against misinformation by explaining the fallacious reasoning within misleading denialist claims. We offer a strategy based on critical thinking methods to analyse and detect poor reasoning within denialist claims. This strategy includes detailing argument structure, determining the truth of the premises, and checking for validity, hidden premises, or ambiguous language. Focusing on argument structure also facilitates the identification of reasoning fallacies by locating them in the reasoning process. Because this reason-based form of inoculation is based on general critical thinking methods, it offers the distinct advantage of being accessible to those who lack expertise in climate science. We applied this approach to 42 common denialist claims and find that they all demonstrate fallacious reasoning and fail to refute the scientific consensus regarding anthropogenic global warming. This comprehensive deconstruction and refutation of the most common denialist claims about climate change is designed to act as a resource for communicators and educators who teach climate science and/or critical thinking.
  • Published: 2018
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:28 Institute of Physics (IOP) English 2012

Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change

The historical contribution of each country to today's observed atmospheric CO2 excess and higher temperatures has become a basis for discussions around burden-sharing of greenhouse gas reduction commitments in political negotiations. However, the accounting methods have considered greenhouse gas emissions only during the industrial era, neglecting the fact that land use changes (LUC) have caused emissions long before the Industrial Revolution. Here, we hypothesize that considering preindustrial LUC affects the attribution because the geographic pattern of preindustrial LUC emissions differs significantly from that of industrial-era emissions and because preindustrial emissions have legacy effects on today's atmospheric CO2 concentrations and temperatures. We test this hypothesis by estimating CO2 and temperature increases based on carbon cycle simulations of the last millennium. We find that accounting for preindustrial LUC emissions results in a shift of attribution of global temperature increase from the industrialized countries to less industrialized countries, in particular South Asia and China, by up to 2–3%, a level that may be relevant for political discussions. While further studies are needed to span the range of plausible quantifications, our study demonstrates the importance of including preindustrial emissions for the most scientifically defensible attribution.
  • Published: 2012
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:15 Institute of Physics (IOP) English 2013

Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes

We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:18 Institute of Physics (IOP) English 2016

Changes in meandering of the Northern Hemisphere circulation

Strong waves in the mid-latitude circulation have been linked to extreme surface weather and thus changes in waviness could have serious consequences for society. Several theories have been proposed which could alter waviness, including tropical sea surface temperature anomalies or rapid climate change in the Arctic. However, so far it remains unclear whether any changes in waviness have actually occurred. Here we propose a novel meandering index which captures the maximum waviness in geopotential height contours at any given day, using all information of the full spatial position of each contour. Data are analysed on different time scale (from daily to 11 day running means) and both on hemispheric and regional scales. Using quantile regressions, we analyse how seasonal distributions of this index have changed over 1979–2015. The most robust changes are detected for autumn which has seen a pronounced increase in strongly meandering patterns at the hemispheric level as well as over the Eurasian sector. In summer for both the hemisphere and the Eurasian sector, significant downward trends in meandering are detected on daily timescales which is consistent with the recently reported decrease in summer storm track activity. The American sector shows the strongest increase in meandering in the warm season: in particular for 11 day running mean data, indicating enhanced amplitudes of quasi-stationary waves. Our findings have implications for both the occurrence of recent cold spells and persistent heat waves in the mid-latitudes.
  • Published: 2016
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:15 Institute of Physics (IOP) English 2017

Cost-effectiveness of reducing emissions from tropical deforestation, 2016–2050

Reducing tropical deforestation is potentially a large-scale and low-cost strategy for mitigating climate change. Yet previous efforts to project the cost-effectiveness of policies to reduce greenhouse gas emissions from future deforestation across the tropics were hampered by crude available data on historical forest loss. Here we use recently available satellite-based maps of annual forest loss between 2001–2012, along with information on topography, accessibility, protected status, potential agricultural revenue, and an observed inverted-U-shaped relationship between forest cover loss and forest cover, to project tropical deforestation from 2016–2050 under alternative policy scenarios and to construct new marginal abatement cost curves for reducing emissions from tropical deforestation. We project that without new forest conservation policies 289 million hectares of tropical forest will be cleared from 2016–2050, releasing 169 GtCO2. A carbon price of US20/tCO2 (50/tCO2) across tropical countries would avoid 41 GtCO2 (77 GtCO2) from 2016–2050. By comparison, we estimate that Brazil's restrictive policies in the Amazon between 2004–2012 successfully decoupled potential agricultural revenue from deforestation and reduced deforestation by 47% below what would have otherwise occurred, preventing the emission of 5.2 GtCO2. All tropical countries enacting restrictive anti-deforestation policies as effective as those in the Brazilian Amazon between 2004–2012 would avoid 58 GtCO2 from 2016–2050.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
01:23 Institute of Physics (IOP) English 2016

Transatlantic flight times and climate change

Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence and increased take-off weight restrictions. Here we investigate the influence of climate change on flight routes and journey times. We feed synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. We focus on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. We find that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5 h 20 min and over 7 h 00 min, respectively. For reasons that are explained using a conceptual model, the eastbound shortening and westbound lengthening do not cancel out, causing round-trip journey times to increase. Even assuming no future growth in aviation, the extrapolation of our results to all transatlantic traffic suggests that aircraft will collectively be airborne for an extra 2000 h each year, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide, which is equivalent to the annual emissions of 7100 average British homes. Our results provide further evidence of the two-way interaction between aviation and climate change.
  • Published: 2016
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:31 Institute of Physics (IOP) English 2014

Higher subsoil carbon storage in species-rich than species-poor temperate forests

Forest soils contribute ca. 70% to the global soil organic carbon (SOC) pool and thus are an important element of the global carbon cycle. Forests also harbour a large part of the global terrestrial biodiversity. It is not clear, however, whether tree species diversity affects SOC. By measuring the carbon concentration of different soil particle size fractions separately, we were able to distinguish between effects of fine particle content and tree species composition on the SOC pool in old-growth broad-leaved forest plots along a tree diversity gradient (1-, 3- and 5-species). Variation in clay content explained part of the observed SOC increase from monospecific to mixed forests, but we show that the carbon concentration per unit clay or fine silt in the subsoil was by 30–35% higher in mixed than monospecific stands indicating a significant species identity or species diversity effect on C stabilization. Underlying causes may be differences in fine root biomass and turnover, in leaf litter decomposition rate among the tree species, and/or species-specific rhizosphere effects on soil. Our findings may have important implications for forestry offering management options through preference of mixed stands that could increase forest SOC pools and mitigate climate warming.
  • Published: 2014
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:08 Institute of Physics (IOP) English 2013

The FAOSTAT database of greenhouse gas emissions from agriculture

Greenhouse gas (GHG) emissions from agriculture, including crop and livestock production, forestry and associated land use changes, are responsible for a significant fraction of anthropogenic emissions, up to 30% according to the Intergovernmental Panel on Climate Change (IPCC). Yet while emissions from fossil fuels are updated yearly and by multiple sources—including national-level statistics from the International Energy Agency (IEA)—no comparable efforts for reporting global statistics for agriculture, forestry and other land use (AFOLU) emissions exist: the latest complete assessment was the 2007 IPCC report, based on 2005 emission data. This gap is critical for several reasons. First, potentially large climate funding could be linked in coming decades to more precise estimates of emissions and mitigation potentials. For many developing countries, and especially the least developed ones, this requires improved assessments of AFOLU emissions. Second, growth in global emissions from fossil fuels has outpaced that from AFOLU during every decade of the period 1961–2010, so the relative contribution of the latter to total climate forcing has diminished over time, with a need for regular updates. We present results from a new GHG database developed at FAO, providing a complete and coherent time series of emission statistics over a reference period 1961–2010, at country level, based on FAOSTAT activity data and IPCC Tier 1 methodology. We discuss results at global and regional level, focusing on trends in the agriculture sector and net deforestation. Our results complement those available from the IPCC, extending trend analysis to a longer historical period and, critically, beyond 2005 to more recent years. In particular, from 2000 to 2010, we find that agricultural emissions increased by 1.1% annually, reaching 4.6 Gt CO2 yr−1 in 2010 (up to 5.4–5.8 Gt CO2 yr−1 with emissions from biomass burning and organic soils included). Over the same decade 2000–2010, the ratio of agriculture to fossil fuel emissions has decreased, from 17.2% to 13.7%, and the decrease is even greater for the ratio of net deforestation to fossil fuel emissions: from 19.1% to 10.1%. In fact, in the year 2000, emissions from agriculture have been consistently larger—about 1.2 Gt CO2 yr−1 in 2010—than those from net deforestation.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:02 Institute of Physics (IOP) English 2015

Ambient air pollution and congenital heart defects in Lanzhou, China

Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010–2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM10 (IQR = 71.2, 61.6, and 27.4 μg m−3, respectively)), and associations with NO2 during 2nd trimester and the entire pregnancy (OR 2nd trimester = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO2 (IQR = 13.4 and 10.9 μg m−3, respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM10 exposures in the 2nd trimester and the entire pregnancy, and SO2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects.
  • Published: 2015
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:26 Institute of Physics (IOP) English 2014

100 years of California's water rights system: patterns, trends and uncertainty

For 100 years, California's State Water Resources Control Board and its predecessors have been responsible for allocating available water supplies to beneficial uses, but inaccurate and incomplete accounting of water rights has made the state ill-equipped to satisfy growing societal demands for water supply reliability and healthy ecosystems. Here, we present the first comprehensive evaluation of appropriative water rights to identify where, and to what extent, water has been dedicated to human uses relative to natural supplies. The results show that water right allocations total 400 billion cubic meters, approximately five times the state's mean annual runoff. In the state's major river basins, water rights account for up to 1000% of natural surface water supplies, with the greatest degree of appropriation observed in tributaries to the Sacramento and San Joaquin Rivers and in coastal streams in southern California. Comparisons with water supplies and estimates of actual use indicate substantial uncertainty in how water rights are exercised. In arid regions such as California, over-allocation of surface water coupled with trends of decreasing supply suggest that new water demands will be met by re-allocation from existing uses. Without improvements to the water rights system, growing human and environmental demands portend an intensification of regional water scarcity and social conflict. California's legal framework for managing its water resources is largely compatible with needed reforms, but additional public investment is required to enhance the capacity of the state's water management institutions to effectively track and regulate water rights.
  • Published: 2014
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:41 Institute of Physics (IOP) English 2017

Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:06 Institute of Physics (IOP) English 2017

Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China

Improved cookstoves and fuels, such as advanced gasifier stoves, carry the promise of improving health outcomes, preserving local environments, and reducing climate-forcing air pollutants. However, low adoption and use of these stoves in many settings has limited their benefits. We aimed to improve the understanding of improved stove use by describing the patterns and predictors of adoption of a semi-gasifier stove and processed biomass fuel intervention in southwestern China. Of 113 intervention homes interviewed, 79% of homes tried the stove, and the majority of these (92%) continued using it 5–10 months later. One to five months after intervention, the average proportion of days that the semi-gasifier stove was in use was modest (40.4% [95% CI 34.3–46.6]), and further declined over 13 months. Homes that received the stove in the first batch used it more frequently (67.2% [95% CI 42.1−92.3] days in use) than homes that received it in the second batch (29.3% [95% CI 13.8−44.5] days in use), likely because of stove quality and user training. Household stove use was positively associated with reported cooking needs and negatively associated with age of the main cook, household socioeconomic status, and the availability of substitute cleaner-burning stoves. Our results show that even a carefully engineered, multi-purpose semi-gasifier stove and fuel intervention contributed modestly to overall household energy use in rural China.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:06 Institute of Physics (IOP) English 2013

Redefining agricultural yields: from tonnes to people nourished per hectare

Worldwide demand for crops is increasing rapidly due to global population growth, increased biofuel production, and changing dietary preferences. Meeting these growing demands will be a substantial challenge that will tax the capability of our food system and prompt calls to dramatically boost global crop production. However, to increase food availability, we may also consider how the world's crops are allocated to different uses and whether it is possible to feed more people with current levels of crop production. Of particular interest are the uses of crops as animal feed and as biofuel feedstocks. Currently, 36% of the calories produced by the world's crops are being used for animal feed, and only 12% of those feed calories ultimately contribute to the human diet (as meat and other animal products). Additionally, human-edible calories used for biofuel production increased fourfold between the years 2000 and 2010, from 1% to 4%, representing a net reduction of available food globally. In this study, we re-examine agricultural productivity, going from using the standard definition of yield (in tonnes per hectare, or similar units) to using the number of people actually fed per hectare of cropland. We find that, given the current mix of crop uses, growing food exclusively for direct human consumption could, in principle, increase available food calories by as much as 70%, which could feed an additional 4 billion people (more than the projected 2–3 billion people arriving through population growth). Even small shifts in our allocation of crops to animal feed and biofuels could significantly increase global food availability, and could be an instrumental tool in meeting the challenges of ensuring global food security.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:01 Institute of Physics (IOP) English 2015

Focus on biodiversity, health and wellbeing: Synthesis and Review

In 2012 Environmental Research Letters (ERL) launched a focus series of research papers on the theme of biodiversity, health and well-being. It was the year of the second Rio Summit on Sustainable Development, a huge number of species had been made extinct and conservationists were making increasingly urgent calls for the protection of biodiversity. The situation is ever more critical. Since we started the issue more species have become extinct, and hundreds more have now become critically endangered. The focus issue highlighted the complexity of the links of biodiversity and health, and provides more evidence for the importance to human health of biodiversity on our planet. Research papers contrasted anthropocentric western scientific views of biodiversity and its ecosystem service to humans, with the more horizontal conceptions of indigenous communities in the Amazon—and as many cultures have recognized throughout history, they recognize that we are part of nature: nature does not exist for us.
  • Published: 2015
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:47 Institute of Physics (IOP) English 2017

Assessing inter-sectoral climate change risks: the role of Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)

The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:02 Institute of Physics (IOP) English 2017

Air pollution impacts on avian species via inhalation exposure and associated outcomes

Despite the well-established links between air pollution and human health, vegetation, and aquatic ecosystems, less attention has been paid to the potential impact of reactive atmospheric gases and aerosols on avian species. In this literature review, we summarize findings published since 1950 regarding avian responses to air pollution and discuss knowledge gaps that could be addressed in future studies. We find consistent evidence for adverse health impacts on birds attributable to exposure to gas-phase and particulate air pollutants, including carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), smoke, and heavy metals, as well as mixtures of urban and industrial emissions. Avian responses to air pollution include respiratory distress and illness, increased detoxification effort, elevated stress levels, immunosuppression, behavioral changes, and impaired reproductive success. Exposure to air pollution may furthermore reduce population density, species diversity, and species richness in bird communities.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:03 Institute of Physics (IOP) English 2018

Greenhouse gas emissions and energy use associated with production of individual self-selected US diets

Human food systems are a key contributor to climate change and other environmental concerns. While the environmental impacts of diets have been evaluated at the aggregate level, few studies, and none for the US, have focused on individual self-selected diets. Such work is essential for estimating a distribution of impacts, which, in turn, is key to recommending policies for driving consumer demand towards lower environmental impacts. To estimate the impact of US dietary choices on greenhouse gas emissions (GHGE) and energy demand, we built a food impacts database from an exhaustive review of food life cycle assessment (LCA) studies and linked it to over 6000 as-consumed foods and dishes from 1 day dietary recall data on adults (N = 16 800) in the nationally representative 2005–2010 National Health and Nutrition Examination Survey. Food production impacts of US self-selected diets averaged 4.7 kg CO2 eq. person−1 day−1 (95% CI: 4.6–4.8) and 25.2 MJ non-renewable energy demand person−1 day−1 (95% CI: 24.6–25.8). As has been observed previously, meats and dairy contribute the most to GHGE and energy demand of US diets; however, beverages also emerge in this study as a notable contributor. Although linking impacts to diets required the use of many substitutions for foods with no available LCA studies, such proxy substitutions accounted for only 3% of diet-level GHGE. Variability across LCA studies introduced a ±19% range on the mean diet GHGE, but much of this variability is expected to be due to differences in food production locations and practices that can not currently be traced to individual dietary choices. When ranked by GHGE, diets from the top quintile accounted for 7.9 times the GHGE as those from the bottom quintile of diets. Our analyses highlight the importance of utilizing individual dietary behaviors rather than just population means when considering diet shift scenarios.
  • Published: 2018
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:29 Institute of Physics (IOP) English 2015

Tipping point of a conifer forest ecosystem under severe drought

Drought-induced tree mortality has recently received considerable attention. Questions have arisen over the necessary intensity and duration thresholds of droughts that are sufficient to trigger rapid forest declines. The values of such tipping points leading to forest declines due to drought are presently unknown. In this study, we have evaluated the potential relationship between the level of tree growth and concurrent drought conditions with data of the tree growth-related ring width index (RWI) of the two dominant conifer species (Pinus edulis and Pinus ponderosa) in the Southwestern United States (SWUS) and the meteorological drought-related standardized precipitation evapotranspiration index (SPEI). In this effort, we determined the binned averages of RWI and the 11 month SPEI within the month of July within each bin of 30 of RWI in the range of 0–3000. We found a significant correlation between the binned averages of RWI and SPEI at the regional-scale under dryer conditions. The tipping point of forest declines to drought is predicted by the regression model as SPEItp = −1.64 and RWItp = 0, that is, persistence of the water deficit (11 month) with intensity of −1.64 leading to negligible growth for the conifer species. When climate conditions are wetter, the correlation between the binned averages of RWI and SPEI is weaker which we believe is most likely due to soil water and atmospheric moisture levels no longer being the dominant factor limiting tree growth. We also illustrate a potential application of the derived tipping point (SPEItp = −1.64) through an examination of the 2002 extreme drought event in the SWUS conifer forest regions. Distinguished differences in remote-sensing based NDVI anomalies were found between the two regions partitioned by the derived tipping point.
  • Published: 2015
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:27 Institute of Physics (IOP) English 2012

Transformational capacity and the influence of place and identity

Climate change is altering the productivity of natural resources with far-reaching implications for those who depend on them. Resource-dependent industries and communities need the capacity to adapt to a range of climate risks if they are to remain viable. In some instances, the scale and nature of the likely impacts means that transformations of function or structure will be required. Transformations represent a switch to a distinct new system where a different suite of factors become important in the design and implementation of response strategies. There is a critical gap in knowledge on understanding transformational capacity and its influences. On the basis of current knowledge on adaptive capacity we propose four foundations for measuring transformational capacity: (1) how risks and uncertainty are managed, (2) the extent of skills in planning, learning and reorganizing, (3) the level of financial and psychological flexibility to undertake change and (4) the willingness to undertake change. We test the influence of place attachment and occupational identity on transformational capacity using the Australian peanut industry, which is presently assessing significant structural change in response to predicted climatic changes. Survey data from 88% of peanut farmers in Queensland show a strong negative correlation between transformational capacity and both place attachment and occupational attachment, suggesting that whilst these factors may be important positive influences on the capacity to adapt to incremental change, they act as barriers to transformational change.
  • Published: 2012
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:59 Institute of Physics (IOP) English 2016

Carbon reductions and health co-benefits from US residential energy efficiency measures

The United States (US) Clean Power Plan established state-specific carbon dioxide (CO2) emissions reduction goals for fossil fuel-fired electricity generating units (EGUs). States may achieve these goals through multiple mechanisms, including measures that can achieve equivalent CO2 reductions such as residential energy efficiency, which will have important co-benefits. Here, we develop state-resolution simulations of the economic, health, and climate benefits of increased residential insulation, considering EGUs and residential combustion. Increasing insulation to International Energy Conservation Code 2012 levels for all single-family homes in the US in 2013 would lead to annual reductions of 80 million tons of CO2 from EGUs, with annual co-benefits including 30 million tons of CO2 from residential combustion and 320 premature deaths associated with criteria pollutant emissions from both EGUs and residential combustion sources. Monetized climate and health co-benefits average 49 per ton of CO2 reduced from EGUs (range across states: 12–390). State-specific co-benefit estimates can inform development of optimal Clean Power Plan implementation strategies.
  • Published: 2016
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:44 Institute of Physics (IOP) English 2012

Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima

A sequence of global ocean circulation models, with horizontal mesh sizes of 0.5°, 0.25° and 0.1°, are used to estimate the long-term dispersion by ocean currents and mesoscale eddies of a slowly decaying tracer (half-life of 30 years, comparable to that of 137Cs) from the local waters off the Fukushima Dai-ichi Nuclear Power Plants. The tracer was continuously injected into the coastal waters over some weeks; its subsequent spreading and dilution in the Pacific Ocean was then simulated for 10 years. The simulations do not include any data assimilation, and thus, do not account for the actual state of the local ocean currents during the release of highly contaminated water from the damaged plants in March–April 2011. An ensemble differing in initial current distributions illustrates their importance for the tracer patterns evolving during the first months, but suggests a minor relevance for the large-scale tracer distributions after 2–3 years. By then the tracer cloud has penetrated to depths of more than 400 m, spanning the western and central North Pacific between 25°N and 55°N, leading to a rapid dilution of concentrations. The rate of dilution declines in the following years, while the main tracer patch propagates eastward across the Pacific Ocean, reaching the coastal waters of North America after about 5–6 years. Tentatively assuming a value of 10 PBq for the net 137Cs input during the first weeks after the Fukushima incident, the simulation suggests a rapid dilution of peak radioactivity values to about 10 Bq m−3 during the first two years, followed by a gradual decline to 1–2 Bq m−3 over the next 4–7 years. The total peak radioactivity levels would then still be about twice the pre-Fukushima values.
  • Published: 2012
  • Publisher: Institute of Physics (IOP)
  • Language: English
out of 2 pages
Loading...
Feedback

Timings

  120 ms - page object
   75 ms - search
    3 ms - highlighting
    0 ms - highlighting/39439
    0 ms - highlighting/39488
    1 ms - highlighting/39435
    1 ms - highlighting/15431
    0 ms - highlighting/39465
    0 ms - highlighting/39393
    1 ms - highlighting/39382
    1 ms - highlighting/39484
    1 ms - highlighting/39483
    1 ms - highlighting/39444
    1 ms - highlighting/39467
    1 ms - highlighting/39390
    0 ms - highlighting/39362
    1 ms - highlighting/39388
    1 ms - highlighting/39457
    0 ms - highlighting/39579
    0 ms - highlighting/39356
    0 ms - highlighting/39489
    2 ms - highlighting/15429
    3 ms - highlighting/15430
    3 ms - highlighting/15427
    2 ms - highlighting/15432
    1 ms - highlighting/39473
    2 ms - highlighting/15425
    0 ms - highlighting/39377
    2 ms - highlighting/15428
    0 ms - highlighting/39359
    1 ms - highlighting/39416
    0 ms - highlighting/39381
    0 ms - highlighting/39464
    0 ms - highlighting/39423
    0 ms - highlighting/39392
    0 ms - highlighting/39389
    0 ms - highlighting/39574
    0 ms - highlighting/39422
    0 ms - highlighting/39568

Version

AV-Portal 3.8.0 (dec2fe8b0ce2e718d55d6f23ab68f0b2424a1f3f)