Show filters Hide filters

Refine your search

Publication Year
1-36 out of 59 results
Change view
  • Sort by:
1:07:34 Institute of Physics (IOP) English 2011

Manipulating Graphene at the Atomic Scale

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:00:07 Institute of Physics (IOP) English 2011

Graphene and hexa-BN Heterostructures

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:04:10 Institute of Physics (IOP) English 2011

Graphene based Electronics and Optoelectronics

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:18:00 Institute of Physics (IOP) English 2011

Raman Spectra of Graphene and Carbon Nanotubes

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
51:23 Institute of Physics (IOP) English 2011

Chiral Electrons and Zero-Mode Anomalies in Graphene

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
54:08 Institute of Physics (IOP) English 2011

Recent Progress in Graphene Synthesis and Applications

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
1:01:25 Institute of Physics (IOP) English 2011

Graphene Update

  • Published: 2011
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:03 Institute of Physics (IOP) English 2013

Bioenergy: how much can we expect for 2050?

Estimates of global primary bioenergy potentials in the literature span almost three orders of magnitude. We narrow that range by discussing biophysical constraints on bioenergy potentials resulting from plant growth (NPP) and its current human use. In the last 30 years, terrestrial NPP was almost constant near 54 PgC yr−1, despite massive efforts to increase yields in agriculture and forestry. The global human appropriation of terrestrial plant production has doubled in the last century. We estimate the maximum physical potential of the world's total land area outside croplands, infrastructure, wilderness and denser forests to deliver bioenergy at approximately 190 EJ yr−1. These pasture lands, sparser woodlands, savannas and tundras are already used heavily for grazing and store abundant carbon; they would have to be entirely converted to bioenergy and intensive forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly double the global human biomass harvest, with far-reaching effects on biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and finding ways to integrate bioenergy with food supply and ecological conservation goals remains a huge and pressing scientific challenge.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:56 Institute of Physics (IOP) English 2013

Connecting plug-in vehicles with green electricity through consumer demand

The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from 'green' sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents' reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:17 Institute of Physics (IOP) English 2018

Feed conversion efficiency in aquaculture: do we measure it correctly?

Globally, demand for food animal products is rising. At the same time, we face mounting, related pressures including limited natural resources, negative environmental externalities, climate disruption, and population growth. Governments and other stakeholders are seeking strategies to boost food production efficiency and food system resiliency, and aquaculture (farmed seafood) is commonly viewed as having a major role in improving global food security based on longstanding measures of animal production efficiency. The most widely used measurement is called the 'feed conversion ratio' (FCR), which is the weight of feed administered over the lifetime of an animal divided by weight gained. By this measure, fed aquaculture and chickens are similarly efficient at converting feed into animal biomass, and both are more efficient compared to pigs and cattle. FCR does not account for differences in feed content, edible portion of an animal, or nutritional quality of the final product. Given these limitations, we searched the literature for alternative efficiency measures and identified 'nutrient retention', which can be used to compare protein and calories in feed (inputs) and edible portions of animals (outputs). Protein and calorie retention have not been calculated for most aquaculture species. Focusing on commercial production, we collected data on feed composition, feed conversion ratios, edible portions (i.e. yield), and nutritional content of edible flesh for nine aquatic and three terrestrial farmed animal species. We estimate that 19% of protein and 10% of calories in feed for aquatic species are ultimately made available in the human food supply, with significant variation between species. Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon. Despite lower FCRs in aquaculture, protein and calorie retention for aquaculture production is comparable to livestock production. This is, in part, due to farmed fish and shrimp requiring higher levels of protein and calories in feed compared to chickens, pigs, and cattle. Strategies to address global food security should consider these alternative efficiency measures.
  • Published: 2018
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:03 Institute of Physics (IOP) English 2017

Carbon tax effects on the poor: a SAM-based approach

A SAM-based price model for Mexico is developed in order to assess the effects of the carbon tax, which was part of the fiscal reform approved in 2014. The model is formulated based on a social accounting matrix (SAM) that distinguishes households by the official poverty condition and geographical area. The main results are that the sector that includes coke, refined petroleum and nuclear fuel shows the highest price increase due to the direct impact of the carbon tax; in addition, air transport and inland transport are the most affected sectors, in an indirect manner, because both employ inputs from the former sector. Also, it is found that welfare diminishes more in the rural strata than in the urban one. In the urban area, the carbon tax is regressive: the negative impact of carbon tax on family welfare is greater on the poorest families.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:53 Institute of Physics (IOP) English 2013

Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas

The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion of freshwater withdrawals in the United States, and shifting where electricity generation occurs can allow the grid to act as a virtual water pipeline, increasing water availability in regions with drought by reducing water consumption and withdrawals for power generation. During a 2006 drought, shifting electricity generation out of the most impacted areas of South Texas (~10% of base case generation) to other parts of the grid would have been feasible using transmission and power generation available at the time, and some areas would experience changes in air quality. Although expensive, drought-based electricity dispatch is a potential parallel strategy that can be faster to implement than other infrastructure changes, such as air cooling or water pipelines.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:32 Institute of Physics (IOP) English 2015

Energy for water and water for energy on Maui Island, Hawaii

Energy and water systems are interconnected. This work first characterizes 2010 primary energy demand for direct water services and local freshwater demand for energy on Maui Island, Hawaii, then investigates scenarios for future changes in these demands. The goal of this manuscript is to dissect the relationship and trends of energy–water connections to inform policymaking decisions related to water and energy planning. Analysis proceeds by inventorying water and energy flows and adjusting to a 2010 base year, then applying intensity factors for energy or water used at a given stage for a given sector to determine absolute energy and water demands for the isolated system of Maui Island. These bottom-up, intensity-based values are validated against published data where available. Maui consumes about 0.05% of its freshwater for energy (versus >6% for the US on average) and about 32% of its electricity (19% of its on-island primary energy) for direct water services (versus 8% of primary energy for the US on average). These values could change with policy choices like increased instream flows, higher wastewater treatment standards, electricity fuel mix changes, desalination, or increased biofuels production. This letter contributes a granular assessment of both energy for water and water for energy in a single isolated system, highlighting opportunities to address energy–water interdependencies in a context that could be relevant in other communities facing similar choices.
  • Published: 2015
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:21 Institute of Physics (IOP) English 2013

REDD+ readiness: early insights on monitoring, reporting and verification systems of project developers

A functional measuring, monitoring, reporting and verification (MRV) system is essential to assess the additionality and impact on forest carbon in REDD+ (reducing emissions from deforestation and degradation) projects. This study assesses the MRV capacity and readiness of project developers at 20 REDD+ projects in Brazil, Peru, Cameroon, Tanzania, Indonesia and Vietnam, using a questionnaire survey and field visits. Nineteen performance criteria with 76 indicators were formulated in three categories, and capacity was measured with respect to each category. Of the 20 projects, 11 were found to have very high or high overall MRV capacity and readiness. At the regional level, capacity and readiness tended to be highest in the projects in Brazil and Peru and somewhat lower in Cameroon, Tanzania, Indonesia and Vietnam. Although the MRV capacities of half the projects are high, there are capacity deficiencies in other projects that are a source of concern. These are not only due to limitations in technical expertise, but can also be attributed to the slowness of international REDD+ policy formulation and the unclear path of development of the forest carbon market. Based on the study results, priorities for MRV development and increased investment in readiness are proposed.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:58 Institute of Physics (IOP) English 2013

Trends in stream nitrogen concentrations for forested reference catchments across the USA

To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among sites across the USA. We found both increasing and decreasing trends in monthly flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments, we found that the length and period of analysis influenced whether trends were positive, negative or non-significant. Trends also differed among neighboring catchments within several Experimental Forests, suggesting the importance of catchment-specific factors in determining nutrient exports. Over the longest time periods, trends were more consistent among catchments within sites, although there are fewer long-term records for analysis. These findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring at a network of sites across the USA to elucidate patterns of change in nutrient concentrations at minimally disturbed forested sites.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
05:27 Institute of Physics (IOP) English 2014

A comparative analysis of the greenhouse gas emissions intensity of wheat and beef in the United States

The US food system utilizes large quantities of liquid fuels, electricity, and chemicals yielding significant greenhouse gas (GHG) emissions that are not considered in current retail prices, especially when the contribution of biogenic emissions is considered. However, because GHG emissions might be assigned a price in prospective climate policy frameworks, it would be useful to know the extent to which those policies would increase the incremental production costs to food within the US food system. This analysis uses lifecycle assessment (LCA) to (1) estimate the magnitude of carbon dioxide equivalent (CO2e) emissions from typical US food production practices, using wheat and beef as examples, and (2) quantify the cost of those emissions in the context of a GHG-pricing regime over a range of policy constructs. Wheat and beef were chosen as benchmark staples to provide a representative range of less intensive and more intensive agricultural goods, respectively. Results suggest that 1.1 ± 0.13 and 31 ± 8.1 kg of lifecycle CO2e emissions are embedded in 1 kg of wheat and beef production, respectively. Consequently, the cost of lifecycle CO2e emissions for wheat (i.e. cultivation, processing, transportation, storage, and end-use preparation) over an emissions price range of 10 and 85 per tonne CO2e is estimated to be between 0.01 and 0.09 per kg of wheat, respectively, which would increase total wheat production costs by approximately 0.3–2% per kg. By comparison, the estimated lifecycle CO2e price of beef over the same range of CO2e prices is between 0.31 and 2.60 per kg of beef, representing a total production cost increase of approximately 5–40% per kg based on average 2010 food prices. This range indicates that the incremental cost to total US food production might be anywhere between 0.63–5.4 Billion per year for grain and 3.70 and 32 Billion per year for beef based on CO2e emissions assuming that total production volumes stay the same.
  • Published: 2014
  • Publisher: Institute of Physics (IOP)
  • Language: English
05:35 Institute of Physics (IOP) English 2013

Land cover dynamics following a deforestation ban in northern Costa Rica

Forest protection policies potentially reduce deforestation and re-direct agricultural expansion to already-cleared areas. Using satellite imagery, we assessed whether deforestation for conversion to pasture and cropland decreased in the lowlands of northern Costa Rica following the 1996 ban on forest clearing, despite a tripling of area under pineapple cultivation in the last decade. We observed that following the ban, mature forest loss decreased from 2.2% to 1.2% per year, and the proportion of pineapple and other export-oriented cropland derived from mature forest declined from 16.4% to 1.9%. The post-ban expansion of pineapples and other crops largely replaced pasture, exotic and native tree plantations, and secondary forests. Overall, there was a small net gain in forest cover due to a shifting mosaic of regrowth and clearing in pastures, but cropland expansion decreased reforestation rates. We conclude that forest protection efforts in northern Costa Rica have likely slowed mature forest loss and succeeded in re-directing expansion of cropland to areas outside mature forest. Our results suggest that deforestation bans may protect mature forests better than older forest regrowth and may restrict clearing for large-scale crops more effectively than clearing for pasture.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:21 Institute of Physics (IOP) English 2015

Potential increasing dominance of heterotrophy in the global ocean

Autotrophy is largely resource-limited in the modern ocean. Paleo evidence indicates this was not necessarily the case in warmer climates, and modern observations as well as standard metabolic theory suggest continued ocean warming could shift global ecology towards heterotrophy, thereby reducing autotrophic nutrient limitation. Such a shift would entail strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We demonstrate transition towards such a state in the early 22nd century as a response to business-as-usual representative concentration pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations; with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near-surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2–4 global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory.
  • Published: 2015
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:02 Institute of Physics (IOP) English 2012

Human impacts on terrestrial hydrology: climate change versus pumping and irrigation

Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices.
  • Published: 2012
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:02 Institute of Physics (IOP) English 2017

Assessing ExxonMobil's climate change communications (1977–2014)

This paper assesses whether ExxonMobil Corporation has in the past misled the general public about climate change. We present an empirical document-by-document textual content analysis and comparison of 187 climate change communications from ExxonMobil, including peer-reviewed and non-peer-reviewed publications, internal company documents, and paid, editorial-style advertisements ('advertorials') in The New York Times. We examine whether these communications sent consistent messages about the state of climate science and its implications—specifically, we compare their positions on climate change as real, human-caused, serious, and solvable. In all four cases, we find that as documents become more publicly accessible, they increasingly communicate doubt. This discrepancy is most pronounced between advertorials and all other documents. For example, accounting for expressions of reasonable doubt, 83% of peer-reviewed papers and 80% of internal documents acknowledge that climate change is real and human-caused, yet only 12% of advertorials do so, with 81% instead expressing doubt. We conclude that ExxonMobil contributed to advancing climate science—by way of its scientists' academic publications—but promoted doubt about it in advertorials. Given this discrepancy, we conclude that ExxonMobil misled the public. Our content analysis also examines ExxonMobil's discussion of the risks of stranded fossil fuel assets. We find the topic discussed and sometimes quantified in 24 documents of various types, but absent from advertorials. Finally, based on the available documents, we outline ExxonMobil's strategic approach to climate change research and communication, which helps to contextualize our findings.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:20 Institute of Physics (IOP) English 2017

Limiting climate change: what's most worth doing?

Wynes and Nicholas (2017 Environ. Res. Lett. 12 074024) claim that some of the most important actions individuals can take to mitigate climate change have been overlooked, particularly in educational messages for adolescents, and estimate the potential impact of some of these, including having fewer children and living car free. These estimates raise questions that deserve serious analysis, but they are based only on the technical potential of the actions and do not consider the plasticity of the behaviors and the feasibility of policies to support them. The actions identified as having the greatest potential are lifestyle changes that accrue benefits over a lifetime or longer, so are not realistic alternatives to actions that can be enacted immediately. But presenting lifestyle choices and the relative impacts of different actions as discussion starters for adolescents could be promising, especially if the discussions highlight issues of behavioral plasticity, policy plasticity, and time scale. Research has identified design principles for interventions to achieve the strongest emissions reductions at time scales up to the decadal. Design principles for achieving longer-lasting changes deserve careful analytic attention, as well as a stronger focus in adolescent textbooks and messages to the general population. Both adolescents and researchers would do well to think carefully about what could promote the generational changes needed to reach a climate change target such as 'well below 2 °C'.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:26 Institute of Physics (IOP) English 2016

The impact of synoptic weather on UK surface ozone and implications for premature mortality

Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.
  • Published: 2016
  • Publisher: Institute of Physics (IOP)
  • Language: English
01:23 Institute of Physics (IOP) English 2016

Transatlantic flight times and climate change

Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence and increased take-off weight restrictions. Here we investigate the influence of climate change on flight routes and journey times. We feed synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. We focus on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. We find that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5 h 20 min and over 7 h 00 min, respectively. For reasons that are explained using a conceptual model, the eastbound shortening and westbound lengthening do not cancel out, causing round-trip journey times to increase. Even assuming no future growth in aviation, the extrapolation of our results to all transatlantic traffic suggests that aircraft will collectively be airborne for an extra 2000 h each year, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide, which is equivalent to the annual emissions of 7100 average British homes. Our results provide further evidence of the two-way interaction between aviation and climate change.
  • Published: 2016
  • Publisher: Institute of Physics (IOP)
  • Language: English
02:52 Institute of Physics (IOP) English 2016

Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa

The Northern Sub-Saharan African (NSSA) region, which accounts for 20%–25% of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001–2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (>75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006–2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2–7%/yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003–2013, cropland increased at an estimated rate of 0.28%/yr of the total NSSA land area, with most of it (0.18%/yr) coming from savanna. During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5°–10° latitude), where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm d−1. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback mechanism.
  • Published: 2016
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:08 Institute of Physics (IOP) English 2013

The FAOSTAT database of greenhouse gas emissions from agriculture

Greenhouse gas (GHG) emissions from agriculture, including crop and livestock production, forestry and associated land use changes, are responsible for a significant fraction of anthropogenic emissions, up to 30% according to the Intergovernmental Panel on Climate Change (IPCC). Yet while emissions from fossil fuels are updated yearly and by multiple sources—including national-level statistics from the International Energy Agency (IEA)—no comparable efforts for reporting global statistics for agriculture, forestry and other land use (AFOLU) emissions exist: the latest complete assessment was the 2007 IPCC report, based on 2005 emission data. This gap is critical for several reasons. First, potentially large climate funding could be linked in coming decades to more precise estimates of emissions and mitigation potentials. For many developing countries, and especially the least developed ones, this requires improved assessments of AFOLU emissions. Second, growth in global emissions from fossil fuels has outpaced that from AFOLU during every decade of the period 1961–2010, so the relative contribution of the latter to total climate forcing has diminished over time, with a need for regular updates. We present results from a new GHG database developed at FAO, providing a complete and coherent time series of emission statistics over a reference period 1961–2010, at country level, based on FAOSTAT activity data and IPCC Tier 1 methodology. We discuss results at global and regional level, focusing on trends in the agriculture sector and net deforestation. Our results complement those available from the IPCC, extending trend analysis to a longer historical period and, critically, beyond 2005 to more recent years. In particular, from 2000 to 2010, we find that agricultural emissions increased by 1.1% annually, reaching 4.6 Gt CO2 yr−1 in 2010 (up to 5.4–5.8 Gt CO2 yr−1 with emissions from biomass burning and organic soils included). Over the same decade 2000–2010, the ratio of agriculture to fossil fuel emissions has decreased, from 17.2% to 13.7%, and the decrease is even greater for the ratio of net deforestation to fossil fuel emissions: from 19.1% to 10.1%. In fact, in the year 2000, emissions from agriculture have been consistently larger—about 1.2 Gt CO2 yr−1 in 2010—than those from net deforestation.
  • Published: 2013
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:33 Institute of Physics (IOP) English 2012

Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia

Extreme cold winter weather events over Eurasia have occurred more frequently in recent years in spite of a warming global climate. To gain further insight into this regional mismatch with the global mean warming trend, we analyzed winter cyclone and anticyclone activities, and their interplay with the regional atmospheric circulation pattern characterized by the semi-permanent Siberian high. We found a persistent weakening of both cyclones and anticyclones between the 1990s and early 2000s, and a pronounced intensification of anticyclone activity afterwards. It is suggested that this intensified anticyclone activity drives the substantially strengthening and northwestward shifting/expanding Siberian high, and explains the decreased midlatitude Eurasian surface air temperature and the increased frequency of cold weather events. The weakened tropospheric midlatitude westerlies in the context of the intensified anticyclones would reduce the eastward propagation speed of Rossby waves, favoring persistence and further intensification of surface anticyclone systems.
  • Published: 2012
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:02 Institute of Physics (IOP) English 2015

Ambient air pollution and congenital heart defects in Lanzhou, China

Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010–2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM10 (IQR = 71.2, 61.6, and 27.4 μg m−3, respectively)), and associations with NO2 during 2nd trimester and the entire pregnancy (OR 2nd trimester = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO2 (IQR = 13.4 and 10.9 μg m−3, respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM10 exposures in the 2nd trimester and the entire pregnancy, and SO2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects.
  • Published: 2015
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:26 Institute of Physics (IOP) English 2014

100 years of California's water rights system: patterns, trends and uncertainty

For 100 years, California's State Water Resources Control Board and its predecessors have been responsible for allocating available water supplies to beneficial uses, but inaccurate and incomplete accounting of water rights has made the state ill-equipped to satisfy growing societal demands for water supply reliability and healthy ecosystems. Here, we present the first comprehensive evaluation of appropriative water rights to identify where, and to what extent, water has been dedicated to human uses relative to natural supplies. The results show that water right allocations total 400 billion cubic meters, approximately five times the state's mean annual runoff. In the state's major river basins, water rights account for up to 1000% of natural surface water supplies, with the greatest degree of appropriation observed in tributaries to the Sacramento and San Joaquin Rivers and in coastal streams in southern California. Comparisons with water supplies and estimates of actual use indicate substantial uncertainty in how water rights are exercised. In arid regions such as California, over-allocation of surface water coupled with trends of decreasing supply suggest that new water demands will be met by re-allocation from existing uses. Without improvements to the water rights system, growing human and environmental demands portend an intensification of regional water scarcity and social conflict. California's legal framework for managing its water resources is largely compatible with needed reforms, but additional public investment is required to enhance the capacity of the state's water management institutions to effectively track and regulate water rights.
  • Published: 2014
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:41 Institute of Physics (IOP) English 2017

Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:06 Institute of Physics (IOP) English 2017

Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China

Improved cookstoves and fuels, such as advanced gasifier stoves, carry the promise of improving health outcomes, preserving local environments, and reducing climate-forcing air pollutants. However, low adoption and use of these stoves in many settings has limited their benefits. We aimed to improve the understanding of improved stove use by describing the patterns and predictors of adoption of a semi-gasifier stove and processed biomass fuel intervention in southwestern China. Of 113 intervention homes interviewed, 79% of homes tried the stove, and the majority of these (92%) continued using it 5–10 months later. One to five months after intervention, the average proportion of days that the semi-gasifier stove was in use was modest (40.4% [95% CI 34.3–46.6]), and further declined over 13 months. Homes that received the stove in the first batch used it more frequently (67.2% [95% CI 42.1−92.3] days in use) than homes that received it in the second batch (29.3% [95% CI 13.8−44.5] days in use), likely because of stove quality and user training. Household stove use was positively associated with reported cooking needs and negatively associated with age of the main cook, household socioeconomic status, and the availability of substitute cleaner-burning stoves. Our results show that even a carefully engineered, multi-purpose semi-gasifier stove and fuel intervention contributed modestly to overall household energy use in rural China.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:01 Institute of Physics (IOP) English 2014

Potential influence of the late Holocene climate on settled farming versus nomadic cattle herding in the Minusinsk Hollow, south-central Siberia

Prehistoric and early historic human cultures are known to be closely connected to and dependent on their natural environments. We test the hypothesis that climate change influenced the means of subsistence of ancient tribes and favored agricultural or cattle herding economic strategies. Our study area is the Khakass–Minusinsk Hollow, located in the foothills of the Sayan Mountains, south-central Siberia, which was, for a few millennia, a buffer zone for human migrations across the Great Eurasian Steppe. Three different methods (the Montane BioClimatic Model, MontBCliM; the biomization method; and the actualizm method) are employed to reconstruct vegetation taken from the fossil pollen of sediment cores in two mountain lakes at eleven time slices related to successive human cultures back to the mid-Holocene. MontBCliM model is used inversely to convert site paleo-vegetation into site paleo-climates. Climate-based regression models are developed and applied to reconstructed climates to evaluate possible pasture and grain crops for these time slices. Pollen-based reconstructions of the climate fluctuations uncovered several dry periods with steppe and forest-steppe and wetter periods with forests since 6000 BP. Grasslands increased by an order of magnitude during the dry periods and provided extensive open space suitable for pastoralism; however, both grain and pasture yields decreased during these dry periods. During wetter climates, both grain and pasture yields increased twofold and supported more fixed human settlements centered around farming and cattle herding. Thus, the dry periods favored pastoralist rather than farming activities. Conversely, tribes that practiced agriculture had some advantage in the wet periods.
  • Published: 2014
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:47 Institute of Physics (IOP) English 2017

Assessing inter-sectoral climate change risks: the role of Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)

The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:53 Institute of Physics (IOP) English 2014

Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent

Glacier surface melt dynamics throughout Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) serve as a good indicator of ice mass ablation and regional climate change in the Russian High Arctic. Here we report trends of surface melt onset date (MOD) and total melt days (TMD) by combining multiple resolution-enhanced active and passive microwave satellite datasets and analyze the TMD correlations with local temperature and regional sea ice extent. The glacier surface snowpack on SevZ melted significantly earlier (−7.3 days/decade) from 1992 to 2012 and significantly longer (7.7 days/decade) from 1995 to 2011. NovZ experienced large interannual variability in MOD, but its annual mean TMD increased. The snowpack melt on NovZ is more sensitive to temperature fluctuations than SevZ in recent decades. After ruling out the regional temperature influence using partial correlation analysis, the TMD on both archipelagoes is statistically anti-correlated with regional late summer sea ice extent, linking land ice snowmelt dynamics to regional sea ice extent variations.
  • Published: 2014
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:03 Institute of Physics (IOP) English 2017

Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet

Globally emitted contaminants accumulate in the Arctic and are stored in the frozen environments of the cryosphere. Climate change influences the release of these contaminants through elevated melt rates, resulting in increased contamination locally. Our understanding of how biological processes interact with contamination in the Arctic is limited. Through shotgun metagenomic data and binned genomes from metagenomes we show that microbial communities, sampled from multiple surface ice locations on the Greenland ice sheet, have the potential for resistance to and degradation of contaminants. The microbial potential to degrade anthropogenic contaminants, such as toxic and persistent polychlorinated biphenyls, was found to be spatially variable and not limited to regions close to human activities. Binned genomes showed close resemblance to microorganisms isolated from contaminated habitats. These results indicate that, from a microbiological perspective, the Greenland ice sheet cannot be seen as a pristine environment.
  • Published: 2017
  • Publisher: Institute of Physics (IOP)
  • Language: English
04:03 Institute of Physics (IOP) English 2018

Greenhouse gas emissions and energy use associated with production of individual self-selected US diets

Human food systems are a key contributor to climate change and other environmental concerns. While the environmental impacts of diets have been evaluated at the aggregate level, few studies, and none for the US, have focused on individual self-selected diets. Such work is essential for estimating a distribution of impacts, which, in turn, is key to recommending policies for driving consumer demand towards lower environmental impacts. To estimate the impact of US dietary choices on greenhouse gas emissions (GHGE) and energy demand, we built a food impacts database from an exhaustive review of food life cycle assessment (LCA) studies and linked it to over 6000 as-consumed foods and dishes from 1 day dietary recall data on adults (N = 16 800) in the nationally representative 2005–2010 National Health and Nutrition Examination Survey. Food production impacts of US self-selected diets averaged 4.7 kg CO2 eq. person−1 day−1 (95% CI: 4.6–4.8) and 25.2 MJ non-renewable energy demand person−1 day−1 (95% CI: 24.6–25.8). As has been observed previously, meats and dairy contribute the most to GHGE and energy demand of US diets; however, beverages also emerge in this study as a notable contributor. Although linking impacts to diets required the use of many substitutions for foods with no available LCA studies, such proxy substitutions accounted for only 3% of diet-level GHGE. Variability across LCA studies introduced a ±19% range on the mean diet GHGE, but much of this variability is expected to be due to differences in food production locations and practices that can not currently be traced to individual dietary choices. When ranked by GHGE, diets from the top quintile accounted for 7.9 times the GHGE as those from the bottom quintile of diets. Our analyses highlight the importance of utilizing individual dietary behaviors rather than just population means when considering diet shift scenarios.
  • Published: 2018
  • Publisher: Institute of Physics (IOP)
  • Language: English
03:27 Institute of Physics (IOP) English 2012

Transformational capacity and the influence of place and identity

Climate change is altering the productivity of natural resources with far-reaching implications for those who depend on them. Resource-dependent industries and communities need the capacity to adapt to a range of climate risks if they are to remain viable. In some instances, the scale and nature of the likely impacts means that transformations of function or structure will be required. Transformations represent a switch to a distinct new system where a different suite of factors become important in the design and implementation of response strategies. There is a critical gap in knowledge on understanding transformational capacity and its influences. On the basis of current knowledge on adaptive capacity we propose four foundations for measuring transformational capacity: (1) how risks and uncertainty are managed, (2) the extent of skills in planning, learning and reorganizing, (3) the level of financial and psychological flexibility to undertake change and (4) the willingness to undertake change. We test the influence of place attachment and occupational identity on transformational capacity using the Australian peanut industry, which is presently assessing significant structural change in response to predicted climatic changes. Survey data from 88% of peanut farmers in Queensland show a strong negative correlation between transformational capacity and both place attachment and occupational attachment, suggesting that whilst these factors may be important positive influences on the capacity to adapt to incremental change, they act as barriers to transformational change.
  • Published: 2012
  • Publisher: Institute of Physics (IOP)
  • Language: English
out of 2 pages
Loading...
Feedback

Timings

  152 ms - page object
   80 ms - search
    4 ms - highlighting
    0 ms - highlighting/39421
    0 ms - highlighting/39474
    0 ms - highlighting/39454
    3 ms - highlighting/15426
    0 ms - highlighting/39439
    0 ms - highlighting/39416
    0 ms - highlighting/39467
    2 ms - highlighting/15431
    0 ms - highlighting/39443
    0 ms - highlighting/39470
    0 ms - highlighting/39576
    0 ms - highlighting/39391
    0 ms - highlighting/39401
    0 ms - highlighting/39586
    0 ms - highlighting/39388
    0 ms - highlighting/39392
    0 ms - highlighting/39390
    0 ms - highlighting/39453
    0 ms - highlighting/39457
    0 ms - highlighting/39414
    1 ms - highlighting/39362
    0 ms - highlighting/39488
    0 ms - highlighting/39394
    0 ms - highlighting/39574
    1 ms - highlighting/15429
    3 ms - highlighting/15428
    1 ms - highlighting/15427
    4 ms - highlighting/15430
    0 ms - highlighting/39473
    1 ms - highlighting/15425
    0 ms - highlighting/39476
    0 ms - highlighting/39356
    0 ms - highlighting/39393
    0 ms - highlighting/39458
    0 ms - highlighting/39429
    1 ms - highlighting/39484

Version

AV-Portal 3.8.0 (dec2fe8b0ce2e718d55d6f23ab68f0b2424a1f3f)